检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
Step4 测试用户权限 由于4中的权限需要等待15-30分钟生效,建议在配置完成后,等待30分钟,再执行如下验证操作。 使用用户组02中任意一个子账号登录ModelArts管理控制台。在登录页面,请使用“IAM用户登录”方式进行登录。 首次登录会提示修改密码,请根据界面提示进行修改。
pip介绍及常用命令 pip常用命令如下: pip --help#获取帮助 pip install SomePackage==XXXX #指定版本安装 pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本
本案例介绍如何在Snt9B上进行分布式训练任务,其中Cluster资源池已经默认安装volcano调度器,训练任务默认使用volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
训练精度测试 流程图 训练精度测试流程图如下图所示: 图1 训练精度测试流程图 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,按自己实际情况。 benchmark-cli train <cfgs_yaml_file> <model_name> <run_type>
训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b qwen-7b glm3-6b glm4-9b 流程图 训练精度测试流程图如下图所示。
训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b 流程图 训练精度测试流程图如下图所示。 图1 训练精度测试流程图 执行训练任务
训练精度测试 约束限制 目前仅支持以下模型: qwen2.5-7b qwen2-7b qwen1.5-7b llama3.2-3b llama3.1-8b llama3-8b llama2-7b yi-6b 流程图 训练精度测试流程图如下图所示。 图1 训练精度测试流程图 执行训练任务
C:\Users\xxx>python --version Python *.*.* 检查是否已安装Python通用包管理工具pip。如果Python安装过程中没有安装通用包管理工具pip,则参见pip官网完成pip安装,推荐pip版本小于24.0。 在本地环境执行命令pip --version,显示如下内容说明pip已安装。
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
C:\Users\xxx>python --version Python *.*.* 执行命令pip --version,确认Python通用包管理工具pip已经存在。 C:\Users\xxx>pip --version pip **.*.* from c:\users\xxx\app
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管
ascendfactory-cli方式启动(推荐) 相对于之前demo.sh方式启动(历史版本)的启动方式,本章节新增了通过benchmark工具启动训练的方式。此方式训练完成后json日志或打屏日志直接打印性能结果,免于计算,方便用户验证发布模型的质量。并且新的训练方式将统一管
性能调优 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 在线服务使用SFS
下文以docker举例。仅做测试验证,可以不需要通过创建deployment或者volcano job的方式,直接启动容器进行测试。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。