检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.910)
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.911)
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。
部署推理服务 非分离部署推理服务 分离部署推理服务 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.908)
方式二:使用Java语言发送预测请求 AK/SK签名认证方式,仅支持Body体12M以内,12M以上的请求,需使用Token认证。 客户端须注意本地时间与时钟服务器的同步,避免请求消息头X-Sdk-Date的值出现较大误差。因为API网关除了校验时间格式外,还会校验该时间值与网关收到请求的时间差,如果
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
升级模型服务 在AI开发过程中,服务升级包括对已部署的模型服务进行优化,以提高性能、增加功能、修复缺陷,并适应新的业务需求。更新模型版本作为服务升级的一部分,涉及用新训练的模型版本替换原来的模型,以提高预测的准确性和模型的环境适应性。 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
部署推理服务 自动化脚本快速部署推理服务(推荐) 手动部署推理服务 父主题: DeepSeek模型基于ModelArts Lite Server适配MindIE推理部署指导
部署推理服务 本章节介绍如何使用vLLM 0.6.3框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。
部署推理服务 本章节介绍如何使用vLLM 0.6.0框架部署并启动推理服务。 前提条件 已准备好Lite k8s Cluster环境,具体参考准备环境。推荐使用“西南-贵阳一”Region上的Cluster和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保集群可以访问公网。
Face权重文件以及训练代码都需要上传至SFS Turbo中。而基于SFS Turbo所执行的训练流程如下: 将SFS Turbo挂载至ECS服务器后,可直接访问SFS Turbo。通过SSH连接ECS将代码包上传至SFS Turbo中。 在表1获取基础镜像,随后通过镜像方案说明中的步骤执行代码包中llm_t
功能介绍 Standard功能介绍 MaaS大模型即服务平台功能介绍 Lite Cluster&Server介绍 AI Gallery功能介绍
用内存,导致磁盘空间不足。 磁盘配额不足。 处理方法 查看虚拟机所使用的存储空间,再查看回收站文件占用内存,根据实际删除回收站里不需要的大文件。 在Notebook实例详情页,查看实例的存储容量。 执行如下命令,排查虚拟机所使用的存储空间,一般接近存储容量,请排查回收站占用内存。
如需了解每种计费项的计费因子、计费公式等信息,请参考计费项。 如需了解实际场景下的计费样例以及各计费项在不同计费模式下的费用计算过程,请参见计费样例。 续费 包年/包月云服务器在到期后会影响ModelArts作业的正常运行。如果您想继续使用ModelArts资源,需要在规定的时间内进行续费,否则资源将会自动释放
x86_64架构的主机,操作系统使用Ubuntu-18.04。您可以准备相同规格的弹性云服务器ECS或者应用本地已有的主机进行自定义镜像的制作。 购买ECS服务器的具体操作请参考购买并登录Linux弹性云服务器。“CPU架构”选择“x86计算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18
|──Dockerfile 代码上传至SFS Turbo 将AscendFactory代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
# 推理工具 代码上传至SFS Turbo 将AscendSpeed代码包AscendCloud-LLM-xxx.zip直接上传至ECS服务器中的SFS Turbo中,例如存放在/mnt/sfs_turbo/AscendCloud-LLM-xxx.zip目录下并解压缩。 unzip
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 主流开源大模型基于Lite Server适配Ascend-vLLM