检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最后,请参考查看日志和性能章节查看预训练的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config.yaml所在路径,并执行以下命令。
最后,请参考查看日志和性能章节查看预训练的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config.yaml所在路径,并执行以下命令。
obs_file.txt') 其中“/home/ma-user/work/obs_file.txt”为文件在Notebook中的存储路径,“obs://bucket_name/obs_file.txt”为该文件上传到OBS的存储路径,其中“bucket_name”为OBS中创建的桶的名称
通用的推理业务及LLM推理可提供下表进行业务迁移评估: 表1 通用的推理业务及LLM推理业务迁移评估表 收集项 说明 实际情况(请填写) 项目名称 项目名称,例如:XXX项目。 - 使用场景 例如: 使用YOLOv5算法对工地的视频流裁帧后进行安全帽检测。
示例: MASTER_ADDR=localhost NNODES=1 NODE_RANK=0 sh scripts/llama2/0_pl_sft_13b.sh 或者: sh scripts/llama2/0_pl_sft_13b.sh 最后,请参考查看日志和性能章节查看SFT微调的日志和性能
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
print(resp.status_code) print(resp.text) “files”中的参数名由在线服务的输入参数决定,需要和“类型”为“file”的输入参数“名称”保持一致。以前提条件里获取的文件预测输入参数“images”为例。
预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、断点续训及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调。 LoRA微调训练 介绍如何进行LoRA微调训练。
属性总览(Placeholder) 属性 描述 是否必填 数据类型 name 参数名称,需要保证全局唯一。
MA_TASK_NAME:任务名称,取值是ps或worker。 具体示例请参见:TensorFlow-GPU框架的代码示例mnist.py(单机)。
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
--output-prefix:处理后的数据集保存路径+数据集名称(例如:moss-003-sft-data)。
图1 等待模型载入 最后,请参考查看日志和性能章节查看预训练的日志和性能。 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907)
先修改以下命令中的参数,再复制执行 示例: MASTER_ADDR=localhost NNODES=1 NODE_RANK=0 sh scripts/llama2/0_pl_lora_13b.sh 或者: sh scripts/llama2/0_pl_lora_13b.sh 最后,请参考查看日志和性能章节查看
您可以使用“docker images”查看您构建的自定义镜像。
确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。
X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10.1) tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 swr
表1 files参数说明 参数 是否必填 说明 请求参数 是 在线服务输入参数名称。 文件路径 否 上传文件的路径。 文件内容 是 上传文件的内容。 文件类型 否 上传文件类型。
确认创建Notebook实例使用的镜像的系统架构,可以在Notebook中打开Terminal,通过命令uname -m查看。 下载对应版本的vscode-server,根据Commit码和Notebook实例镜像架构下载。
您可以使用“docker images”查看您构建的自定义镜像。