检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SDXL基于Standard适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型基础上
Notebook的自定义镜像制作方法 用户在使用ModelArts开发环境时,经常需要对开发环境进行一些改造,如安装、升级或卸载一些包。但是某些包的安装升级需要root权限,运行中的Notebook实例中无root权限,所以在Notebook实例中安装需要root权限的软件,目前
文档导读 本文档指导您如何安装和配置开发环境、如何通过调用ModelArts SDK提供的接口函数进行二次开发。 章节 内容 SDK简介 简要介绍ModelArts SDK的概念。 快速开始 介绍如何使用ModelArts SDK进行二次开发。 (可选)本地服务器安装ModelArts
后,需设置取值范围。 搜索算法配置 ModelArts内置三种超参搜索算法,用户可以根据实际情况选择对应的算法,支持多选。对应的算法和参数解析请参考以下: bayes_opt_search:贝叶斯优化(SMAC) tpe_search:TPE算法 anneal_search:模拟退火算法(Anneal)
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
在Lite Cluster资源池上使用Ascend FaultDiag工具完成日志诊断 场景描述 本文档介绍了在ModelArts Lite环境下使用Ascend FaultDiag工具进行日志诊断的过程,包括日志采集、日志清洗、故障诊断三个步骤。 日志数据以节点为单位进行采集,
在ECS中通过Dockerfile从0制作自定义镜像用于推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自
从0-1制作自定义镜像并创建模型 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜像包,镜像包
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
Standard模式。 model_name:评测模型名称,llama2。 deploy_method:部署方法,不同的部署方式api参数输入、输出解析方式不同,目前支持tgi、ma_standard、vllm等方式。 vllm_model:deploy_method为vllm时,服务以o
部署并启动推理服务中的模型地址参数model,模型格式是Huggingface的目录格式。 deploy_method:部署方法,不同的部署方式api参数输入、输出解析方式不同,目前支持tgi、vllm等方式,本案例使用vllm部署方式。 若要在生产环境中进行精度测试,还需修改benchmark_eval/config/config
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
资源池创建失败的原因与解决方法? 本文主要介绍在ModelArts资源池创建失败时,如何查找失败原因,并解决问题。 问题定位 您可以参考以下步骤,查看资源池创建失败的报错信息,并根据相应的解决方法解决问题: 登录ModelArts控制台,单击弹性集群,单击资源池列表上方的“操作记录”查看创建失败的资源池。
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
注册自定义镜像 功能介绍 将用户自定义的镜像注册到ModelArts镜像管理。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/{project_id}/images
Standard模式。 model_name:评测模型名称,llama2。 deploy_method:部署方法,不同的部署方式api参数输入、输出解析方式不同,目前支持tgi、ma_standard、vllm等方式。 vllm_model:deploy_method为vllm时,服务以o