检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
a-34b-hf") 使用量化模型 使用量化模型需要在NPU的机器上运行。 1. 在模型的保存目录中创建quant_config.json文件,bits必须设置为8,指定量化为int8;group_size必须设置为-1,指定不使用pergroup;desc_act必须设置为false,内容如下:
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
awq --clone PyTorch-2.1.0 conda activate awq 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 python examples/quantize.py --model-path
oAWQ源码。 cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
transformers cd llm_tools/AutoAWQ bash build.sh 2、运行“examples/quantize.py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 pip install transformers==4.41.0 # AutoAWQ未适配transformers
然后执行下一步操作。 图10 确认智能标注结果 数据发布 ModelArts训练管理模块支持通过ModelArts数据集或者OBS目录中的文件创建训练作业。如果选择通过数据集作为训练作业的数据源,则需要指定数据集及特定的版本。因此,用户需要为准备好的数据发布一个版本,具体操作参考
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称
cc0 cann_8.0.rc2 不同软件版本对应的基础镜像地址不同,请严格按照软件版本和镜像配套关系获取基础镜像。 支持的模型列表和权重文件 本方案支持vLLM的v0.3.2版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --handler-name:生成数据集的用途,这里是生成的文本数据集,用于预训练。 GeneralPretrainHandler
说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有下载权限,请联系您所在企业的华为方技术支持下载获取。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表3所示。 表3 支持的模型列表和权重获取地址 序号 模型名称
代码目录和代码启动文件。代码目录为代码启动文件的一级目录。 “job_config”字段下的“inputs”和“outputs”分别为算法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的数据文件本地路径和训练生成的模型输出本地路径。
source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型,取值为:TensorFlow/MXNet/Spark_MLlib/Sci
“运行日志输出”开启后,不支持关闭。 LTS服务提供的日志查询和日志存储功能涉及计费,详细请参见了解LTS的计费规则。 请勿打印无用的audio日志文件,这会导致系统日志卡死,无法正常显示日志,可能会出现“Failed to load audio”的报错。 您可以进入批量服务的详情页面,通
3.912中的AscendCloud-LLM-xxx.zip软件包和算子包AscendCloud-OPP,AscendCloud-LLM关键文件介绍如下。 |——AscendCloud-LLM ├──llm_inference # 推理代码 ├──ascend_vllm