检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend/ModelLink.git/': error setting certificate verify
像时,如遇到git下载代码出现以下类似的报错信息,关闭git验证即可。 报错信息: fatal: unable to access 'https://gitee.com/ascend/ModelLink.git/': error setting certificate verify
http_proxy=http://proxy.modelarts.com:80 \ HTTPS_PROXY=http://proxy.modelarts.com:80 \ https_proxy=http://proxy.modelarts.com:80 USER root
下载地址:https://huggingface.co/benjamin-paine/stable-diffusion-v1-5/tree/main (需登录) 下载stable-diffusion-xl-base-1.0模型包并上传到宿主机上,官网下载地址:https://huggingface
0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4
用户在进行NPU精度和GPU精度比对前,需要保证两边的配置一致。 表1 超参说明 超参 说明 学习率 影响模型收敛程度,决定了模型在每次更新权重时所采用的步长。学习率过高,模型可能会过度调整权重,导致不稳定的训练过程;如果学习率过低,模型训练速度会变慢,甚至陷入局部最优。 batch
见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
ModelArts-Console访问地址 华北-北京四 https://console.huaweicloud.com/modelarts/?region=cn-north-4#/dataLabel?tabActive=labelConsole 华北-北京一 https://console.huaweicloud
新建一个相同计算规格的实例。 配置更新记录 展示“当前配置”详情和“历史更新记录”。 “当前配置”:展示模型名称、版本、状态、实例规格、分流、实例数、部署超时时间、环境变量、存储挂载等信息。专属资源池部署的服务,同时展示资源池信息。 “历史更新记录”:展示历史模型相关信息。 监控信息
ModelArts CommonOperations没有任何专属资源池的创建、更新、删除权限,只有使用权限。推荐给子用户配置此权限。 ModelArts CommonOperations 必选 如果需要给子用户开通专属资源池的创建、更新、删除权限,此处要勾选ModelArts FullAccess,请谨慎配置。
json,放在weights文件夹下。 下载链接:https://huggingface.co/stabilityai/sd-vae-ft-ema/tree/main 下载text_encoder权重,放在weights_t5文件夹下。 下载链接:https://huggingface.co/
如下以查询作业ID为10的可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs/10 响应示例 成功响应示例 { "duration": 33000, "service_url": "https://console.huaweicloud
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
并将下述内容写入其中。 # 容器镜像构建主机需要连通公网 # 基础容器镜像, https://github.com/NVIDIA/nvidia-docker/wiki/CUDA # # https://docs.docker.com/develop/develop-images
下载CogVideoX1.5 5b模型,huggingface地址如下 https://huggingface.co/THUDM/CogVideoX1.5-5B 准备数据集 数据集可参考使用如下数据集 https://huggingface.co/datasets/Wild-Hea
三方开源源码 git clone https://gitee.com/ascend/MindSpeed.git git clone https://github.com/huggingface/transformers.git git clone https://github.com/NVIDIA/Megatron-LM
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint