检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练模型时引用依赖包,如何创建训练作业? ModelArts支持训练模型过程中安装第三方依赖包。在训练代码目录下放置“pip-requirements.txt”文件后,在训练启动文件被执行前系统会执行如下命令,以安装用户指定的Python Packages。 pip install
自定义python包中如果引用model目录下的文件,文件路径怎么写 如果容器中的文件实际路径不清楚,可以使用Python获取当前文件路径的方法获取。 os.getcwd() #获取文件当前工作目录路径(绝对路径) os.path.realpath(__ file __) #获得文件所在的路径(绝对路径)
Moxing安装文件不支持下载和用户自主安装。在ModelArts的Notebook和训练作业镜像中预置了Moxing安装包,用户可以直接引用。 父主题: 功能咨询
ModelArts中提示OBS路径错误 问题现象 在ModelArts中引用OBS桶路径时,提示找不到用户创建的OBS桶或提示ModelArts.2791:非法的OBS路径。 在对OBS桶操作时,出现Error: stat:403错误。 Notebook中下载OBS文件时提示Permission
编写训练代码 训练模型时引用依赖包,如何创建训练作业? 训练作业常用文件路径是什么? 如何安装C++的依赖库? 训练作业中如何判断文件夹是否复制完毕? 如何在训练中加载部分训练好的参数? 训练作业的启动文件如何获取训练作业中的参数? 训练作业中使用os.system('cd xxx')无法进入相应的文件夹?
固定子目录名称,用于放置模型相关文件 | │ ├── <<自定义python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 | │ ├── saved_model.pb 必选: protocol buffer格式文件,包含该模型的图描述 | │
https://huggingface.co/runwayml/stable-diffusion-v1-5/ -b main # 将下载的文件夹重命名,以便后续脚本中引用 mv stable-diffusion-v1-5 pytorch_models 这里由于Huggingface网站的限制以及模型文件的大
下步骤: (可选)引入依赖 当您使用自定义脚本创建算法的时候,如果您的模型引用了其他依赖,您需要在“算法管理 > 创建算法”的“代码目录”下放置相应的文件或安装包。 安装python依赖包请参考模型中引用依赖包时,如何创建训练作业? 安装C++的依赖库请参考如何安装C++的依赖库?
MXNet创建kvstore时程序被阻塞,无报错 问题现象 使用kv_store = mxnet.kv.create('dist_async')方式创建“kvstore”时程序被阻塞。如,执行如下代码,如果无法输出“end”,表明程序阻塞。 print('start') kv_store
保存到“README.md”文件里。 模型描述部分是一个可在线编辑、预览的Markdown文件,里面包含该模型的简介、能力描述、训练情况、引用等信息。编辑内容会自动保存在“README.md”文件里。 更新后的“README.md”文件自动存放在数据集详情页的“文件版本”页签或者是模型详情页的“模型文件”页签。
保存到“README.md”文件里。 模型描述部分是一个可在线编辑、预览的Markdown文件,里面包含该模型的简介、能力描述、训练情况、引用等信息。编辑内容会自动保存在“README.md”文件里。 更新后的“README.md”文件自动存放在数据集详情页的“文件版本”页签或者是模型详情页的“模型文件”页签。
PROJECT_ID 调用预测请求的项目ID。 USER_NAME 调用预测请求的用户名。 USER_ID 调用预测请求的用户ID。 “#”表示引用变量,匹配的字符串需要用单引号。 #{内置变量} == '字符串' #{内置变量} matches '正则表达式' 示例一: 当调用预测请
使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments 问题现象 使用预置AI算法部署在线服务报错gunicorn:error:unrecorgized arguments... 图1 在线服务报错 原因分析 根据报错日志分析,
用户自定义镜像自建的conda环境会查到一些额外的包,影响用户程序,如何解决? 问题现象 用户的自定义镜像运行在Notebook里会查到一些额外的pip包。如下图所示,左侧为自定义镜像运行在本地环境,右侧为运行在Notebook里。 可能原因 Notebook自带moxing、m
训练作业找不到GPU 问题现象 训练作业运行出现如下报错: failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected 原因分析 根据错误信息判断,报错原因为训练作业运行程序读取不到GPU。
在配置文件中配置“sdk_decrypt_implementation_func=yourmodule.decrypt_func”指向自定义的解密方法的引用。程序加载时会通过import_lib加载认证凭据信息。 配置文件中配置密文的格式“iam_ak={Crypto}cipher”,其中ci
日志提示"write line error" 问题现象 在程序运行过程中,刷出大量错误日志“[ModelArts Service Log]modelarts-pipe: write line error”。并且问题是必现问题,每次运行到同一地方的时候,出现错误。 原因分析 出现该问题的可能原因如下:
准备模型训练镜像 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍
日志提示"No CUDA-capable device is detected" 问题现象 在程序运行过程中,出现如下类似错误。 1.‘failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected’
必选:固定子目录名称,用于放置模型相关文件 │ │ ├──<<自定义Python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 │ │ ├──mnist_mlp.pt 必选,pytorch模型保存文件,保存为“state_dict”,存有权重变量等信息。 │