检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
部署推理服务 在Notebook调试环境中部署推理服务 介绍如何在Notebook中配置NPU环境,部署并启动推理服务,完成精度测试和性能测试。 如果需要部署量化模型,需在Notebook中进行模型权重转换后再部署推理服务。 在推理生产环境中部署推理服务 介绍如何在创建AI应
2a1 -j 8 编译时需要加上MPI=1的参数,否则无法进行多机之间的测试。 MPI路径版本需要匹配,可以通过“ls /usr/mpi/gcc/”查看openmpi的具体版本。 nccl-test测试。 单机测试: /root/nccl-tests/build/all_reduce_perf
“预测”即可看到预测结果。 图9 预测-openai 在线服务的更多内容介绍请参见文档查看服务详情。 Step5 推理性能测试 推理性能测试操作请参见推理性能测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
on-vocab8404-pytorch/example/asr_example.wav的识别结果如下: 图2 测试音频识别结果 步骤九:在Aishell1测试集上测试 python infer.py --model_path 模型文件所在的绝对路径 --input_file aishell
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
False Bool ignore_eos表示是否忽略EOS并且继续生成token。 Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911)
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
\"crossbow\"], \"type\": \"string\"}}}" }' Step5 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 附录:基于vLLM(v0.3.2)不同模型推理支持的max-model-len长度说明 基于vLLM(v0
举例。仅做测试验证,可以不需要通过创建deployment或者volcano job的方式,直接启动容器进行测试。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。
健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查: 健康检查端口是否可以正常工作 自定义镜像中配置了健康检查,需要在测试镜像时,同步测试健康检查接口是否可以正常工作,具体参考从0-1制作自定义镜像并创建AI应用中的本地验证镜像方法。 创建模型界面上配置的健康检查地址与实际配置的是否一致
关闭详细日志命令: unset DETAIL_TIME_LOG 配置后重启推理服务生效。 Step6 推理性能和精度测试 推理性能和精度测试操作请参见推理性能测试和推理精度测试。 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905)
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
图3 输入有效的远端文件URL 图4 远端文件上传成功 异常处理 远端文件上传失败。可能是网络原因。请先在浏览器中输入该远端文件的URL地址,测试该文件是否能下载。 图5 远端文件上传失败 父主题: 上传文件至JupyterLab
处理方法 请排查是否将数据下载至“/cache”目录下,GPU规格资源的每个节点会有一个“/cache”目录,空间大小为4TB。并确认该目录下并发创建的文件数量是否过大,占用过多存储空间会出现inode耗尽的情况,导致空间不足。 请排查是否使用的是GPU资源。如果使用的是CPU规格的
--test_count=3 (随机选择 3个数据作为测试集) user_id: 用户的唯一不重复的ID值,必选。 excel_addr: 待处理的excel文件的地址,必选。 dataset_name: 处理后的数据集名称,必选。 proportion: 测试集所占份数,范围[1,9],可选。 test_count:
部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务 批量服务可对批量数据进行推理,完成数据处理后自动停止。