检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Some sources point out that Frank Rosenblatt developed and explored all of the basic ingredients of the deep learning systems of today
富,越来越多的人开始关注这个“崭新”的研究领域:深度学习。深度学习以神经网络为主要模型,一开始用来解决机器学习中的表示学习问题。但是由于其强大的能力,深度学习越来越多地用来解决一些通用人工智能问题,比如推理、决策等。目前,深度学习技术在学术界和工业界取得了广泛的成功,受到高度重视
而受到越来越多的关注。深度学习技术作为一种强大的人工智能策略,广泛地推动了视觉语音学习的发展。在过去的五年中,许多基于深度学习的方法被提出来解决这一领域的各种问题,特别是视觉语音的自动识别和生成。为了进一步推动视觉语音的研究,本文对视觉语音分析中的深度学习方法进行了综述。我们涵盖
一些软件框架支持使用高阶导数。在深度学习软件框架中,这至少包括 Theano和 TensorFlow。这些库使用一种数据结构来描述要被微分的原始函数,它们使用相同类型的数据结构来描述这个函数的导数表达式。这意味着符号微分机制可以应用于导数(从而产生高阶导数)。在深度学习的相关领域,很少会计算
我相信能在深度学习领域精进的人都不会是普通人。 诚然,无论是读教材、读论文还是本篇所说的读代码,这些本身都是一个个人学习能力提升和知识汲取的过程。对于从事深度学习工作的我们而言,arxiv上的论文和GitHub上的代码都无穷尽,关键在于保持学习的劲头,做一名终身学习者。
R-CNN 的全连接层的相同架构。5.5 深度残差网络He 等人 (2015) 提出的残差网络 (ResNet) 由 152 层组成。ResNet 具有较低的误差,并且容易通过残差学习进行训练。更深层次的 ResNet 可以获得更好的性能。在深度学习领域,人们认为 ResNet 是一个重要的进步。5
我们看到PCA算法提供了一种压缩数据的方式。我们也可以将PCA视为学习数据表示的无监督学习算法。这种表示基于上述简单表示的两个标准。PCA学习一种比原始输入低维的表示。它也学习了一种元素之间彼此没有线性相关的表示。这是学习表示中元素统计独立标准的第一步。要实现完全独立性,表示学习算法必须也去掉变量间的非线性关系。PCA将输入
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化 (generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差 (training
我们几乎从未知晓真实数据的生成过程,所以我们永远不知道被估计的模型族是否包括生成过程。然而,深度学习算法的大多数应用都是针对这样的情况,其中真实数据的生成过程几乎肯定在模型族之外。深度学习算法通常应用于极为复杂的领域,如图像、音频序列和文本,本质上这些领域的真实生成过程涉及模拟整
索了元学习的能力,同时在数据层面研究了异质信息网络的表达能力。在MetaHIN中,作者提出使用多方面的语义上下文来增强每个用户的任务,因此设计了一种新颖的语义增强型任务构建器,用于在元学习场景中捕获异质信息网络中的语义信息。进一步地,我们构建了一个协同适应元学习器。该学习器既具有
正如我们已经看到的,最近邻预测和决策树都有很多的局限性。尽管如此,在计算资源受限制时,它们都是很有用的学习算法。通过思考复杂算法和 k-最近邻或决策树之间的相似性和差异,我们可以建立对更复杂学习算法的直觉。
当数据的维数很高时,很多机器学习问题变得相当困难。这种现象被称为维数灾难 (curse of dimensionality)。特别值得注意的是,一组变量不同的可能配置数量会随着变量数目的增加而指数级增长。维数灾难发生在计算机科学的许多地方,在机器学习中尤其如此。 由维数灾难带来的一个挑战是统计挑战。如图5
因为这个求和包含多达指数级的项,除非该模型的结构允许某种形式的简化,否则是不可能计算的。目前为止,无法得知深度神经网络是否允许某种可行的简化。相反,我们可以通过采样近似推断,即平均许多掩码的输出。即使是 10 − 20 个掩码就足以获得不错的表现。然而,一个更好的方法能不错地近似
传统的机器学习需要人工提取数据特征,而深度学习通过层次化的表示来完成特征的提取。层次化的表示是指用简单的表示逐步表达较复杂的表示。1. 如何理解简单和复杂的表示? 2. 这种所谓层次化的表示的理论依据是什么?
较大时,Cramér-Rao 下界(Rao, 1945; Cramér, 1946) 表明不存在均方误差低于最大似然学习的一致估计。因为这些原因(一致性和统计效率),最大似然通常是机器学习中的首选估计。当样本数目小到会过拟合时,正则化策略如权重衰减可用于获得训练数据有限时方差较小的最大似然有偏版本。
当输入向量的每个度量不被保证的时候,分类问题将会变得有挑战性。为了解决分类任务,学习算法只需要定义一个从输入向量映射到输出类别的函数。当一些输入可能丢失时,学习算法必须学习一组函数,而不是单个分类函数。每个函数对应着分类具有不同缺失输入子集的 x。这种情况在医疗诊断中经常出现,因
持不变,还必须掌握对特定对象(如移动身体的部分)保持不变的因素。因此根据流形正切分类器提出的算法相当简单:(1)使用自编码器通过无监督学习来学习流形的结构,以及(2)如正切传播(式 (7.67) )一样使用这些切面正则化神经网络分类器。
非常小。另一方面,实验中梯度下降似乎可以在许多情况下逃离鞍点。Goodfellow et al. (2015) 可视化了最新神经网络的几个学习轨迹,给了一个例子。这些可视化显示,在突出的鞍点附近,代价函数都是平坦的,权重都为零。但是他们也展示了梯度下降轨迹能够迅速逸出该区间。Goodfellow
线性代数作为数学的一个分支,广泛应用于科学和工程中。然而,因为线性代数是主要面向连续数学,而非离散数学。掌握好线性代数对于理解和从事机器学习算法相关工作是很有必要的,尤其是深度学习算法而言。线性代数提供了被称为矩阵逆(matrix inversion)的强大工具。对于大多数矩阵A,我们都能通过矩阵逆解析地求解式(2
" 深度学习 " 中的 " 深 ",指的是技术上、架构上的性质,也就是堆叠了很多隐藏层。这种 " 深 ",并不是说它对抽象的概念有深刻的理解,但是呢,一旦任务场景改变,就需要重新找数据训练,比如说检测人脸的模型在不相关的应用程序中可能是无用的,比如诈骗检测,目前还是无法像人脑一样