检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
首先将上面训练的最终模型文件epoch_xx.pt(xx取决于训练的epoch个数) 复制到/home/ma-user/open_clip目录下,然后在/home/ma-user/open_clip下,执行如下命令。 vi inference.py 将下面的代码复制进去后保存。代码中的epoch_29.pt请替换成实际值。
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
description String 版本描述信息。 export_images Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) extract_serial_number Boolean 发布时是否需
是否必选 参数类型 描述 final_annotation 否 Boolean 是否直接导入到最终结果。可选值如下: true:标签导入到已标注(默认值) false:标签导入到待确认,导入到待确认状态目前仅支持的数据集类型为图像分类和物体检测。 label_format 否 LabelFormat
gc-poc-sdxl-lora-train.tar.gz代码包。解压后上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver-ei-cto-office-ae06cae7-tmp1216 docker_build]#
Turbo文件系统联动,可以实现数据灵活管理、高性能读取数据等。通过OBS上传训练所需的模型文件、训练数据等,再将OBS中的数据文件导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 约束限制 如果要使用自动重启功能,资源规格必须选择八卡规格。
zip文件中的ascendcloud-aigc-poc-sdxl-finetune.tar.gz代码包。解压后上传到宿主机上。 依赖的插件代码包、模型包和数据集存放在宿主机上的本地目录结构如下,供参考。 [root@devserver-ei-cto-office-ae06cae7-tmp1216 docker_build]#
env: - name: OPEN_SCRIPT_ADDRESS # 开放脚本地址,其中region-id根据实际region修改,例如cn-southwest-2 value: "
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
安装MiniCPM-V2_0 Ascend软件包。 将获取到的MiniCPM-V Ascend软件包AscendCloud-AIGC-*.zip文件上传到容器的/home/ma-user目录下。获取路径参见表2。 解压AscendCloud-AIGC-*.zip文件,解压后将里面指定文件与对应MiniCPM-V文件进行替换。
description String 版本描述信息。 export_images Boolean 发布时是否导出图片到版本输出目录。可选值如下: true:导出图片到版本输出目录 false:不导出图片到版本输出目录(默认值) extract_serial_number Boolean 发布时是否需
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所
LoRA微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b LORA微调为例,执行脚本0_pl_lora_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。