检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908) 训练场景和方案介绍 准备镜像环境 Finetune训练 LoRA训练 Controlnet训练 父主题: 文生图模型训练推理
准备工作 准备环境 准备代码 准备数据 准备镜像环境 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911)
主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.911) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907)
Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建模型 使用大模型在ModelArts Standard创建模型部署在线服务 第三方推理框架迁移到
Standard模型训练 使用ModelArts Standard自定义算法实现手写数字识别 基于ModelArts Standard运行GPU训练作业
基于AIGC模型的GPU推理业务迁移至昇腾指导 场景介绍 迁移环境准备 pipeline应用准备 应用迁移 迁移效果校验 模型精度调优 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
常见问题 MindSpore Lite问题定位指南 模型转换报错如何查看日志和定位? 日志提示Compile graph failed 日志提示Custom op has no reg_op_name attr 父主题: GPU推理业务迁移至昇腾的通用指导
主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906)
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 父主题: LLM大语言模型训练推理
应用迁移 模型适配 pipeline代码适配 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
模型精度调优 场景介绍 精度问题诊断 精度问题处理 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
历史SDK包常见的报错如下 服务部署节点运行报错 输入服务相关的参数后,执行报错如下: 解决方案 以上两种常见报错均可通过升级最新的SDK包解决。 父主题: Standard Workflow
人工标注图片数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。您可以通过手工标注或智能一键标注的方式添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 针对图像分类场景,开始标注前,您需要了解: 图片标注支持多标签