检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景
Cypher查询 Cypher是一种声明式图查询语言,使用Cypher语句可以查询和修改GES中的数据,并返回结果。 具体操作步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 Cypher查询编译过程中使用了基于label的点边索引。 第一次使用Cypher查询,
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时序路径
API版本选择建议 GES API版本与软件版本相对应,1.0.0为起始版本号,其余版本均在起始版本基础上进行修改,且向下兼容。具体请参考管理面API概览和内存版中各接口对应的版本号。 建议您根据需要选择合适的版本进行操作。 父主题: 使用前必读
使用feature函数可以看到当前支持的Gremlin特性,显示false表示GES服务不支持此特性,显示为true表示GES服务支持此特性,特性详情可参考Gremlin官网。
条件过滤 为了方便用户对图数据的分析,可以通过设置条件过滤,对图数据进行进一步的过滤分析。 具体操作如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 单击绘图区右侧的,或者在绘图区,选中一个点,单击右键,选择“查看属性”,显示“条件过滤及属性”页面。 在“条件过滤及属性
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于社交网络分析
属性编辑 属性页签可展示选中点或边的属性信息,也可对单个点或边的属性进行编辑。 属性编辑的操作如下: 在绘图区选中一个点或边,单击右键,选择“查看属性”,会在右侧显示“属性”页签,展示选中点边的属性信息。 若选中的点有多个标签(label),可单击label后的下拉框来查看其它label
管理面API(V1) 系统管理API 图管理API 备份管理API 元数据管理API 任务中心API 父主题: 历史API
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
动态图 时间轴设置 群体演化 动态拓展 时序路径 父主题: 访问图和分析图
路径API 查询路径详情(1.1.6) 父主题: 内存版
具体操作步骤如下: 登录图引擎服务管理控制台,在左侧导航栏选择“备份管理”。 在“备份管理”页面,选择需要恢复数据的备份,在“操作”列单击“恢复”。 在“恢复”页面,选择待恢复图,勾选“恢复操作将覆盖关联图。恢复操作启动后,关联图将重新启动。”,单击“是”。
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选
中介中心度算法(Betweenness Centrality) 概述 中介中心度算法(Betweenness Centrality)以经过某个节点的最短路径数目来刻画节点重要性的指标。 适用场景 可用作社交、风控等网络中“中间人”发掘,交通、传输等网络中关键节点识别;适用于社交、金融风控
性能监控 在运维监控页面左侧导航栏单击“监控>性能监控”,进入性能监控页面。在性能监控页面展示以下这些性能指标的趋势,其中包括: CPU使用率(%) 内存使用率(%) 磁盘使用率(%) 磁盘I/O(KB/s) 网络I/O(KB/s) tomcat连接数使用率(%) swap盘使用率
图解图计算技术