检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备工作 准备资源 准备数据 准备权重 准备代码 将数据预热到SFS Turbo 准备镜像 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
训练脚本说明 训练脚本参数说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
主流开源大模型基于Standard+OBS+SFS适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
息。 部署服务并查看详情 在模型详情页面,单击右上角“部署>在线服务”,进入服务部署页面,模型和版本默认选中,选择合适的“实例规格”(例如CPU:2核 8GB),其他参数可保持默认值,单击“下一步”,跳转至服务列表页,当服务状态变为“运行中”,服务部署成功。 单击服务名称,进入服
训练启动脚本说明和参数配置 训练数据集预处理说明 训练权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
mox #obs存放数据路径 obs_code_dir= "obs://<bucket_name>/llm_train" obs_data_dir= "obs://<bucket_name>/training_data" obs_model_dir= "obs://<bucket_name>/model"
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.909)
训练启动脚本说明和参数配置 训练的数据集预处理说明 训练的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.911)
因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建的服务。操作完成后,ModelArts服务即停止计费。 登录OBS控制台,进入自己创建的OBS桶中,删除存储在OBS中的数据。操作完成后,OBS服务即停止计费。 对于使用专属资源池创建的自动学习作业:
训练脚本存放目录说明 不同模型推荐的参数与NPU卡数设置 训练tokenizer文件说明 父主题: Qwen-VL模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.912)
“下载方式”选择“对象存储服务(OBS)”。 “目标区域”选择您需要将该数据集下载到的区域位置,如“华北-北京四”。 “目标位置”选择OBS桶路径,桶内如有同名的文件或文件夹,将被新下载的文件或文件夹覆盖。 图1 下载数据集(至OBS) 将数据集下载至ModelArts “下载方式”:选择“ModelArts数据集”。
lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: Qwen-VL基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.912)
Turbo 作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch
由于ModelArts的使用权限依赖OBS服务的授权,需要为用户授予OBS的系统权限。子用户的IAM权限是由其主用户设置的,如果主用户没有赋予OBS的putObjectAcl权限即会导致创建模型构建失败。 处理方法 了解ModelArts依赖的OBS权限自定义策略,请参见ModelArts依赖的OBS权限自定义策略样例。
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.912)
准备工作 准备资源 准备数据 准备权重 准备代码 准备镜像 准备Notebook(可选) 父主题: 主流开源大模型基于Standard+OBS适配ModelLink PyTorch NPU训练指导(6.3.908)