检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"false" }, "score" : 0.66 } ], "source" : "https://test-obs.obs.xxx.com:443/data/3_1597649054631.jpg?AccessKeyId=RciyO7RHmhNTfOZVr
服务预测失败 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,预测失败。 原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XX
true:覆盖已标注结果 false:不覆盖已标注结果(默认值) total_stats CheckTaskStats object 历史验收任务汇总后的验收报告。 表5 CheckTaskStats 参数 参数类型 描述 accepted_sample_count Integer 通过的样本数目。
昇腾云服务6.3.904版本说明 昇腾云服务6.3.904版本发布支持的软件包和能力说明如下,软件包获取路径:Support-E网站。 发布包 软件包特性说明 配套说明 备注 昇腾云模型代码 三方大模型,包名:AscendCloud-3rdLLM PyTorch框架下支持如下模型训练:
AppKey和AppSecret不匹配 当服务预测使用的AppKey和AppSecret不匹配时,报错“APIG.1009”:“AppKey or AppSecret is invalid”。 查询AppKey和AppSecret,使用APP认证访问在线服务,请参考访问在线服务(APP认证)。 父主题: 服务预测
在线服务预测报错ModelArts.4503 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4503。 原因分析及处理方法 服务预测报错ModelArts.4503有多种场景,常见场景如下: 通信出错 请求报错:{"
e.py编写有误,可以通过查看服务运行日志,定位具体原因进行修复。 拉取镜像失败 服务启动失败,提示拉取镜像失败,请参考服务部署、启动、升级和修改时,拉取镜像失败如何处理? 资源不足,服务调度失败 服务启动失败,提示资源不足,服务调度失败,请参考服务部署、启动、升级和修改时,资源不足如何处理?
Studio左侧导航栏中,选择“模型部署”进入服务列表。 选择“我的服务”页签。 选择模型服务,单击操作列的“更多 > 扩缩容”,进入扩缩容页面。 在扩缩容页面,根据业务需要增删模型服务的实例数,配置完成后,单击“确认”提交扩缩容任务。 在我的服务列表,单击服务名称,进入服务详情页,可以查看修改后的实例数是否生效。
参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必须填写此参数。取值必须和启动推理服务时的model ${model_path}参数保持一致。 通过vLLM服务API接口启动服务时,推理请求不涉及此参数。 prompt 是 - Str 请求输入的问题。
图1 创建授权ModelArts云服务操作SFS Turbo的部分权限 已有委托新增授权操作SFS Turbo 使用主用户账号登录管理控制台,单击右上角用户名,在下拉框中选择“统一身份认证”,进入统一身份认证(IAM)服务。 在统一身份认证服务页面的左侧导航选择“权限管理 > 权
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
C:\Users\xxx>python --version Python *.*.* 检查是否已安装Python通用包管理工具pip。如果Python安装过程中没有安装通用包管理工具pip,则参见pip官网完成pip安装,推荐pip版本小于24.0。 在本地环境执行命令pip --version,显示如下内容说明pip已安装。
【下线公告】华为云ModelArts服务旧版数据集下线公告 华为云计划于2024/10/31 00:00(北京时间)用AI开发平台ModelArts的新版数据集全面替代旧版数据集,旧版数据集正式下线。 下线范围 下线区域:华北-北京四(其他区域已下线) 受影响服务 ModelArts旧版数据集。
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
评测动态性能脚本 ├── generate_dataset.py # 生成自定义数据集的脚本 ├── benchmark_utils.py # 工具函数集 ├── benchmark.py # 执行静态、动态性能评测脚本 ├── requirements.txt
process the new request 原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
ModelArts在线服务和边缘服务有什么区别? 在线服务 将模型部署为一个Web服务,您可以通过管理控制台或者API接口访问在线服务。 边缘服务 云端服务是集中化的离终端设备较远,对于实时性要求高的计算需求,把计算放在云上会引起网络延时变长、网络拥塞、服务质量下降等问题。而终端
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地