检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ue 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Dee
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192 gradient_accumulation_steps:
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
Studio左侧导航栏中,选择“模型部署”进入服务列表。 选择“我的服务”页签。 选择模型服务,单击操作列的“更多 > 扩缩容”,进入扩缩容页面。 在扩缩容页面,根据业务需要增删模型服务的实例数,配置完成后,单击“确认”提交扩缩容任务。 在我的服务列表,单击服务名称,进入服务详情页,可以查看修改后的实例数是否生效。
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host:服务IP地址,如127.0.0.1。 --port:服务端口,和推理服务端口8080。 --url:若以vllm接口方式启动服务,API接口公网地
在线服务预测报错ModelArts.4206 问题现象 在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts
在线服务预测报错MR.0105 问题现象 部署为在线服务,服务处于运行中状态,预测时报错:{ "erno": "MR.0105", "msg": "Recognition failed","words_result": {}}。 图1 预测报错 原因分析 请在“在线服务”详情页面
在线服务预测报错ModelArts.4302 问题现象 在线服务部署完成且服务已经处于“运行中”的状态后,向运行的服务发起推理请求,报错ModelArts.4302。 原因分析及处理方法 服务预测报错ModelArts.4302有多种场景,以下主要介绍两种场景: "error_msg":
如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 常见问题 为什么要下线旧版训练管理? ModelArts旧版训练全面上线以后为众多开发者提供了AI训练能力,其中训练服务作为基础服务之一,经过持续迭代已经无法完全满足众多开发者的新特性需求。基于服务演进,Mo
数据库安全服务。 云服务防抖动和遭受攻击后的应急响应/恢复策略 ModelArts服务具备租户资源隔离能力,避免单租户资源被攻击导致爆炸半径大,影响其他租户。 ModelArts服务具备资源池和隔离能力,避免单租户资源被攻击导致爆炸半径过大风险。 ModelArts服务定义并维护
在线服务 部署在线服务时,自定义预测脚本python依赖包出现冲突,导致运行出错 在线服务预测时,如何提高预测速度? 调整模型后,部署新版本AI应用能否保持原API接口不变? 在线服务的API接口组成规则是什么? 在线服务运行中但是预测失败时,如何排查报错是不是模型原因导致的 在
部署的在线服务状态为告警 问题现象 在部署在线服务时,状态显示为“告警”。 解决方法 使用状态为告警的服务进行预测,可能存在预测失败的风险,请从以下4个角度进行排查,并重新部署。 后台预测请求过多。 如果您使用API接口进行预测,请检查是否预测请求过多。大量的预测请求会导致部署的在线服务进入告警状态。
service_type String 镜像支持服务类型。枚举值如下: COMMON:通用镜像。 INFERENCE: 建议仅在推理部署场景使用。 TRAIN: 建议仅在训练任务场景使用。 DEV: 建议仅在开发调测场景使用。 UNKNOWN: 未明确设置的镜像支持的服务类型。 size Long 镜像大小(单位KB)。
服务预测 服务预测失败 服务预测失败,报错APIG.XXXX 在线服务预测报错ModelArts.4206 在线服务预测报错ModelArts.4302 在线服务预测报错ModelArts.4503 在线服务预测报错MR.0105 Method Not Allowed 请求超时返回Timeout
参数说明 --backend:服务类型,支持tgi、vllm、mindspore、openai等。上面命令中使用vllm举例。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tok
process the new request 原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
启动停止边缘节点服务实例 功能介绍 启动停止边缘节点服务实例。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI PUT /v1/{project_id}/servic
服务状态一直处于“部署中” 问题现象 服务状态一直处于“部署中”,查看模型日志未发现服务有明显错误。 原因分析 一般情况都是模型的端口配置有问题。建议您首先检查创建模型的端口是否正确。 处理方法 模型的端口没有配置,如您在自定义镜像配置文件中修改了端口号,需要在部署模型时,配置对应的端口号,使新的模型重新部署服务。