检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github
Dockerfile中的"https://${bucket_name}.obs.cn-north-4.myhuaweicloud.com/${folder_name}/pytorch.tar.gz",需要替换为1中pytorch.tar.gz在OBS上的路径(需将文件设置为公共读)。 进入Docker
调试、训练推理框架。 AI平台层提供端到端的AI开发工具链,支持开发者一站式完成模型开发和上线,并提供高效的资源管理能力,支持自动化故障恢复,提升AI模型开发、训练、上线全流程效率。 AI开发工具链层提供端到端的大模型开发工具链,支持主流优质开源大模型“开箱即用”,提供大模型开发
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。DeepSpe
Studio大模型即服务平台完成模型创建后,可以对模型进行压缩,获得更合适的模型。 场景描述 模型压缩是指将高比特浮点数映射到低比特量化空间,从而减少显存占用的资源,降低推理服务时延,提高推理服务吞吐量,并同时减少模型的精度损失。模型压缩适用于追求更高的推理服务性能、低成本部署以及可接受一定精度损失的场景。
资源和工具链,以及具体的Notebook代码运行示例和最佳实践,并对于实际的操作原理和迁移流程进行说明,包含迁移后的精度和性能验证、调试方法说明。 核心概念 推理业务昇腾迁移整体流程及工具链 图1 推理业务昇腾迁移整体路径 推理业务昇腾迁移整体分为七个大的步骤,并以完整工具链覆盖全链路:
“log_dir”参数建议设置为一个新的目录,“checkpoint_path”参数设置为上一次训练结果输出路径,如果是OBS目录,路径填写时建议使用“obs://”开头。 如果标注数据中的标签发生了变化,在运行“mox.run”前先执行如果标签发生变化的操作。 mox.run(input_fn=input_fn
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
"src_path" : "https://infers-data.obs.xxxxx.com/xgboosterdata/", "dest_path" : "https://infers-data.obs.xxxxx.com/output/", "req_uri"
本教程需要使用到的AscendCloud-3rdLLM-xxx.zip软件包中的关键文件介绍如下。 ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测
训练数据除了训练数据集,也可以是预测模型。在创建训练作业前,需要先准备好训练数据。 当训练数据可以直接使用,无需二次处理时,可以直接将数据上传至OBS桶。在创建训练作业时,训练的输入参数位置可以直接填写OBS桶路径。 当训练数据集的数据未标注或者需要进一步的数据预处理,可以先将数据导入ModelArts数据管理模块
费订阅,但在使用过程中如果消耗了硬件资源进行部署,管理控制台将根据实际使用情况收取硬件资源的费用。 前提条件 注册并登录华为云,且创建好OBS桶用于存储算法和Workflow。 订阅免费Workflow 登录“AI Gallery”。 选择“资产集市 > MLOps > Work
“点击上传”或拖动文件,单击“确认上传”启动上传。 上传单个超过5GB的文件时,请使用Gallery CLI工具。CLI工具的获取和使用请参见Gallery CLI配置工具指南。 文件合集大小不超过50GB。 文件上传完成前,请不要刷新或关闭上传页面,防止意外终止上传任务,导致数据缺失。
autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface.co/models?sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16 per-channel 步骤一 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。
type String 数据来源类型。枚举值如下: dataset:数据集 obs:OBS swr:SWR model_list:AI应用列表 label_task:标注任务 service:在线服务 conditions Array of Constraint objects
度更高。 计算节点规格 即智能标注任务使用的资源规格。 说明: 智能标注创建时免费,但OBS存储会按需收费,请参考计费详情。为保证您的资源不浪费,标注作业与后续任务完成后,请及时清理您的OBS桶。 计算节点个数 默认为1,表示单机模式。目前仅支持此参数值。 表2 预标注 参数 说明
精度对齐 长训Loss比对结果 使用Msprobe工具分析偏差 Loss对齐结果 父主题: Dit模型Pytorch迁移与精度性能调优