检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
modelarts/workspace.id String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表12 NetworkMetadataAnnotations 参数 参数类型 描述 os.modelarts/description
动学习项目中提示“部署上线任务提交失败”的错误。 修改建议 方法1:进入“部署上线>在线服务”页面,将不再使用的服务删除,释放资源。 方法2:如果您部署的在线服务仍需继续使用,建议申请增加配额。 父主题: 部署上线
具体计费方式请参见ModelArts产品价格详情。部署AI应用可选择按需计费,也可根据业务类型和需求购买套餐包。 为避免出现因购买套餐和使用套餐不一致产生多余计费的问题出现, 建议您注意核对在使用的套餐包资源规格是否和购买的套餐包资源规格一致。 父主题: 计费相关
AI应用的端口没有配置,默认为8080,如您在自定义镜像配置文件中修改了端口号,需要在部署AI应用时,配置对应的端口号,使新的AI应用重新部署服务。 如何修改默认端口号,请参考使用自定义镜像创建在线服务,如何修改默认端口。 父主题: 服务部署
具体计费方式请参见ModelArts产品价格详情。部署AI应用可选择按需计费,也可根据业务类型和需求购买套餐包。 为避免出现因购买套餐和使用套餐不一致产生多余计费的问题出现, 建议您注意核对在使用的套餐包资源规格是否和购买的套餐包资源规格一致。 父主题: 计费FAQ
入so文件(自行在浏览器下载),再设置LD_LIBRARY_PATH,具体见2。 不支持。尝试更换引擎,重新下发作业。或者使用自定义镜像创建作业,可参考使用自定义镜像创建作业。 父主题: 云上迁移适配故障
云模型按需部署能力,帮助用户快速创建和部署AI应用,管理全周期AI工作流。 ModelArts服务的计费方式简单、灵活,您既可以选择按实际使用时长计费,也可以选择更经济的按包周期(包年/包月)计费方式。详细的费用价格请参见产品价格详情。 更多详细的计费介绍,请参见《计费说明》文档。
在解压大量文件可能会出现此情况并造成节点重启。可以适当在解压大量文件时,加入sleep。比如每解压1w个文件,就停止1s。 存储限制 根据规格情况合理使用数据盘,数据盘大小请参考训练环境中不同规格资源大小。 CPU过载 减少线程数。 排查办法 根据错误信息判断,报错原因来源于用户代码。 您可以通过以下两种方式排查:
企业项目下添加用户组,为不同的用户组设置细粒度权限供组里的用户使用。 如果您未开通企业项目管理服务的权限,也可以在ModelArts创建自己独立的工作空间,但是无法使用跟企业项目相关的功能。 工作空间为白名单功能,使用该功能需要提工单申请开通。 父主题: 基本配置
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢
运行中服务告警中出现该提示,可能代码有问题导致内存溢出或者业务使用量太大导致内存需求增多。 处理方法 在部署或升级在线服务时,选择更大内存规格的计算节点。 图3 选择计算节点规格 运行中服务出现告警时,需要分析是您的代码是否出现漏洞导致内存溢出、是否因为业务使用量太大需要更多的内存。如果因业务原因需要
如果整个Notebook页面也已经无法使用,单击任何地方都无反应,则关闭Notebook页面,关闭ModelArts管理控制台页面。然后,重新打开管理控制台,打开之前无法使用的Notebook,此时的Notebook仍会保留无法使用之前的所有变量空间。 如果重新打开的Notebook仍然无法使用,则进入Mo
自动续费 自动续费可以减少手动续费的管理成本,避免因忘记手动续费而导致ModelArts中专属资源池不能使用。自动续费的规则如下所述: 以专属资源池的到期日计算第一次自动续费日期和计费周期。 专属资源池自动续费周期以您选择的续费时长为准。例如,您选择了3个月,专属资源池即在每次到期前自动续费3个月。
print(dataset_list) 示例四:分页查询数据集列表 # 默认一次返回10条数据集记录,可通过设置limit和offset进行分页查询 dataset_list = Dataset.list_datasets(session, offset=0, limit=50)
将版本回退至pytorch1.3。 必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置
2U的CPU,运行Notebook时最大使用到2U的资源;内存同理,最少需要4.8G的内存,运行时最大使用到8U的内存。 超分情况下会存在实例终止的风险。如1个8U的节点上同时启动了6个2U的实例,如果其中一个实例CPU使用增大到超过节点的上限(8U)时,k8S会将使用资源最多的实例终止掉。 因
在遇到资源不足的情况时,ModelArts会进行三次重试,在服务重试期间,如果有资源释放出来,则服务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服
处理方法 必现的问题,使用本地Pycharm远程连接Notebook调试安装。 先远程登录到所选的镜像,使用“nvcc -V”查看目前镜像自带的CUDA版本。 重装torch等,需要注意选择与上一步版本相匹配的版本。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发
如果整个Notebook页面也已经无法使用,单击任何地方都无反应,则关闭Notebook页面,关闭ModelArts管理控制台页面。然后,重新打开管理控制台,打开之前无法使用的Notebook,此时的Notebook仍会保留无法使用之前的所有变量空间。 如果重新打开的Notebook仍然无法使用,则进入Mo
模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘