检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1,保持其他参数不变,单击“重新生成”,再单击“重新生成”,可以观察到模型前后两次回复内容的多样性降低。
"bad_target":"我不会回答"} 单个文件大小不超过50GB,文件数量最多1000个。 父主题: 数据集格式要求
默认值:0 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。 默认值:1.0 最大口令限制 用于控制聊天回复的长度和质量。 默认值:2048 话题重复度控制 用于控制生成文本中的重复程度。调高参数模型会更频繁地切换话题,从而避免生成重复内容。
多样性与一致性 多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。
在完成数据标注审核后,需在“数据标注 > 任务管理”页面单击“生成”,生成加工数据集。 生成后的加工数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。
例如,对于文本生成任务,可以使用“根据以下关键词生成一段文章:xxx”的模板;而对于文本分类任务,可以使用“以下句子属于哪个类别:xxx”的模板。 尝试多种提示词模板:在实际应用中,可以尝试多种提示词模板,观察哪种模板能更好地引导模型生成符合预期的输出。
提示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决于模型能力及提示词质量。
华为云租户的安全责任在于对使用的IaaS、PaaS和SaaS类云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机和访客虚拟机的操作系统,虚拟防火墙、API网关和高级安全服务,各项云服务,租户数据,以及身份账号和密钥管理等方面的安全配置。
评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图2 创建提示词评估任务 单击“确定”,评估任务自动进入执行状态。
确保生成高质量的训练数据以满足业务需求和模型训练的要求。用户还可以灵活地调整算子编排顺序以及自定义清洗模板,有效提升数据清洗效率并支持大规模数据处理,确保生成的数据集符合训练的标准。
比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、关键词、简介等结构化信息,可以将有监督的问题设置为“请根据标题xxx/关键性xxx/简介xxx,生成一段不少于xx个字的文本。”
输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。
开启流式开关后,API会在生成文本的过程中,实时地将生成的文本发送给客户端,而不是等到生成完成后一次性将所有文本发送给客户端。 temperature 否 Float 用于控制生成文本的多样性和创造力。
在完成数据加工后,在“加工任务”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 父主题: 加工数据集
单击操作列“生成”,将生成“发布数据集”。 发布数据集可在“数据工程 > 数据管理 > 数据集 > 发布数据集”中查看。 父主题: 加工文本类数据集
提示词应用示例 应用提示词实现智能客服系统的意图匹配 应用提示词生成面试题目 父主题: 提示词写作实践
在完成数据加工后,如果无需使用数据标注、数据合成功能,可直接在“加工任务”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 父主题: 加工图片类数据集
在完成数据加工后,如果无需使用数据标注、数据合成功能,可直接在“加工任务”页面单击操作列“生成”,生成加工数据集。 加工后的数据集可在“数据工程 > 数据管理 > 数据集 > 加工数据集”中查看。 父主题: 加工文本类数据集
提示词主要包含以下要素: 指令:希望模型执行的特定任务或指令,如总结、提取、生成等。 上下文:包含外部信息或额外的上下文信息,引导语言模型更好地响应。 输入数据:用户输入的内容或问题。 输出指示:指定输出的类型或格式。
大模型节点基于预训练的盘古NLP大模型生成响应,从而实现自然语言理解和生成。完成后,结果传递给结束节点。 结束节点:工作流的终结节点,负责输出最终结果。无论是翻译结果还是大模型生成的回答,都会通过该节点输出给用户。 父主题: 低代码构建多语言文本翻译工作流