检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
现功能。该功能会对剩余未标注图片的标注优先级给出建议。因为标注优先级高的图片的智能标注结果未达到预期,所以称之为难例。 ModelArts平台提供的自动难例发现功能,在智能标注以及数据采集筛选过程中,将自动标注出难例,建议对难例数据进一步确认标注,然后将其加入训练数据集中,使用此
报错“ssh: connect to host xxx.pem port xxxxx: Connection refused”如何解决? 问题现象 原因分析 实例处于非运行状态。 解决方法 请前往ModelArts控制台查看实例是否处于运行状态,如果实例已停止,请执行启动操作,如
日志提示“pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields” 问题现象 使用pandas读取csv数据表时,日志报出如下错误导致训练作业失败: pandas.errors.ParserError:
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.908)
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${SAVE_PATH}/logs路径下获取。日志存放路径为:/home/ma-user/ws/saved_dir_for_ma_output/llama2-70b/logs
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.911)
附录:训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF
训练的权重转换说明 以llama2-13b举例,使用训练作业运行0_pl_pretrain_13b.sh脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行scripts/llama2/2_convert_mg_hf
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
训练脚本说明参考 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 离线训练安装包准备说明 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
查看日志和性能 查看日志 训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件 查看性能
查看日志和性能 查看日志 训练过程中,训练日志会在第一个的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,日志存放在第一个的Rank节点中;日志存放路径为:对应表1表格中output_dir参数值路径下的trainer_log.jsonl文件。 查看性能
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
eagle投机小模型训练 本章节提供eagle小模型自行训练的能力,客户可通过本章节,使用自己的数据进行训练eagle小模型,并使用自行训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的