检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Workflow工作流管理 获取Workflow工作流列表 新建Workflow工作流 删除Workflow工作流 查询Workflow工作流 修改Workflow工作流 总览Workflow工作流 查询Workflow待办事项 在线服务鉴权 创建在线服务包 获取Execution列表
工作空间管理 查询工作空间详情 修改工作空间 删除工作空间 查询工作空间配额 修改工作空间配额 查询工作空间列表 创建工作空间
Lite Server使用前必读 Lite Server使用流程 Lite Server高危操作一览表 Lite Server算力资源和镜像版本配套关系
在导入模型时,提示模型或镜像大小超过限制。 原因分析 如果使用的是OBS导入或者训练导入,则是基础镜像、模型文件、代码、数据文件和下载安装软件包的大小总和超过了限制。 如果使用的是自定义镜像导入,则是解压后镜像和镜像下载文件的大小总和超过了限制。 处理方法 精简模型或镜像后,重新导入。 父主题: 模型管理
网卡名称错误 当训练开始时提示网卡名称错误。或者通信超时。可以使用ifconfig命令检查网卡名称配置是否正确。 比如,ifconfig看到当前机器IP对应的网卡名称为enp67s0f5,则可以设置环境变量指定该值。 export GLOO_SOCKET_IFNAME=enp67s0f5
-r OBS支持多种文件上传方式,当文件少于100个时,可以在OBS Console中上传,当文件大于100个时,推荐使用工具,推荐OBS Browser+(win)、obsutil(linux)。上述例子为obsutil使用方法。 准备算法 main.py文件内容如下,并将其上传至OBS桶的demo文件夹中:
类型。例如本案例使用的数据集,系统匹配为“图片”类型。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 数据集输入位置:用来存放源数据集信息,例如本案例中从AI
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
Notebook实例重新启动后,需要删除本地known_hosts才能连接 可以在本地的ssh config文件中对这个Notebook配置参数“StrictHostKeyChecking no”和“UserKnownHostsFile=/dev/null”,如下参考所示: Host
参数类型 描述 name String 工作流存储的名称。填写1-64位,只包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 type String 工作流存储的类型,当前只支持obs。 path String 统一存储的根路径,当前只支持OBS路径。 表16 WorkflowAsset
调用失败时的错误码,具体请参见错误码。 调用成功时无此字段。 spec_total_count Integer 作业资源规格总数。 specs specs结构数组 资源规格参数列表,如表4所示。 表4 specs属性列表说明 参数 参数类型 说明 spec_id Long 资源规格的ID。 core String
自定义镜像导入不支持配置运行时依赖,系统不会自动安装所需要的pip依赖包。 处理方法 重新构建镜像。 在构建镜像的dockerfile文件中安装pip依赖包,例如安装Flask依赖包。 # 配置华为云的源,安装 python、python3-pip 和 Flask RUN cp -a /etc/apt/sources
left on device”。 原因分析 ModelArts部署使用的是容器化部署,容器运行时有空间大小限制,当用户的模型文件或者其他自定义文件,系统文件超过Docker size大小时,会提示镜像内空间不足。 处理方法 公共资源池容器Docker size的大小最大支持50G,专属资源池Docker
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
tokenized_dataset = self.get_tokenized_data() output_bin_files = {} output_idx_files = {} builders = {} level = "document" if self
为PretrainedFromHF。 --tokenizer-name-or-path:tokenizer的存放路径,与HF权重存放在一个文件夹下。 --seq-length:要处理的最大seq length。 --workers:设置数据处理使用执行卡数量 / 启动的工作进程数。
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs", placeholder_type=wf.PlaceholderType.INT, default=60
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
SEED 1234 随机种子数。每次数据采样时,保持一致。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 模型参数设置规定 TP张量并行 、PP流水线并行、CP context并行的参数设置:TP×PP×CP的值要被NPU数量(word_size)整除。