检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用盘古预置NLP大模型进行文本对话 场景描述 此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您
盘古大模型是否可以自定义人设? 如何将本地的数据上传至平台? 导入数据过程中,为什么无法选中OBS的具体文件进行上传? 如何查看预置模型的历史版本? 更多 大模型微调训练类 如何调整训练参数,使盘古大模型效果最优? 为什么微调后的盘古大模型的回答中会出现乱码? 如何判断盘古大模型训练状态是否正常?
使用盘古NLP大模型创建Python编码助手应用 场景描述 该示例演示了如何使用盘古NLP大模型创建Python编码助手执行应用,示例将使用Agent开发平台预置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用
使用盘古应用百宝箱生成创意活动方案 场景描述 该示例演示了如何使用盘古应用百宝箱生成创意活动方案。 应用百宝箱是盘古大模型服务为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 操作流程 使用盘古应用百宝箱生成创意活动方案的步骤如下:
盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
应用与部署:当大模型训练完成并通过验证后,进入应用阶段。主要包括以下几个方面: 模型优化与部署:将训练好的大模型部署到生产环境中,可能通过云服务或本地服务器进行推理服务。此时要考虑到模型的响应时间和并发能力。 模型监控与迭代:部署后的模型需要持续监控其性能,并根据反馈进行定期更新或再训练。随着
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
问答数据进行微调,微调后却发现多轮回答的效果不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第
创建提示词工程 通过精心设计和优化提示词,可以引导大模型生成用户期望的输出。提示词工程任务的目标是通过设计和实施一系列的实验,来探索如何利用提示词来提高大模型在各种任务上的表现。 撰写提示词前需要先创建提示词工程,用于对提示词进行统一管理。 登录ModelArts Studio大模型开发平台,进入所需空间。
大模型微调训练类问题 无监督领域知识数据量无法支持增量预训练,如何进行模型学习 如何调整训练参数,使盘古大模型效果最优 如何判断盘古大模型训练状态是否正常 如何评估微调后的盘古大模型是否正常 如何调整推理参数,使盘古大模型效果最优 为什么微调后的盘古大模型总是重复相同的回答 为什么微调后的盘古大模型的回答中会出现乱码
该参数值的数据类型,当前支持三种类型。 String:字符串类型 Integer:四字节整型 Number:八字节浮点数 请求方式 默认以Body方式请求。 是否必填 指定该参数是否为必填项。 打开开关:必填 关闭开关:非必填 默认值 参数的默认值,如果插件服务的入参生成缺失,默认值会在大模型解析时被使用。 响应参数
输入:支持用户自定义取值。 指定回复 - 可撰写指定的回复信息,并以{{参数名称}}的形式插入变量。 支持用户将多个输入变量合并成一个字符串输出,使用{{参数名称}}代指上述定义的输入参数。 例如,已定义输入参数end_input值为hello,定义“指定回复”内容为{{end_input}}
大模型使用类问题 盘古大模型是否可以自定义人设 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的具体文件进行上传 如何查看预置模型的历史版本
可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。 可以选择“指定区域项目资源”,如指定“西南-贵阳一”区域,即用户组内的IAM用户仅可使用该区域项目中的资源。 可以选择“全局服务资源”,即服务部署时不区分区域,访问
语,ko为韩语,pt为葡萄牙语,ja为日语,th为泰语,tr为土耳其语,es为西班牙语,en为英语,vi为越南语,zh为中文,auto为不指定由插件自行决定语种。to的取值范围是ar、de、ru、fr、ko、pt、ja、th、es、en、vi、zh。ar为阿拉伯语,de为德语,r
设置为任意值,使用标准UUID格式。 图2 获取工作流调用路径-2 使用Postman调用API 获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入工作流的调用路径,详见获取调用路径。 填写请求Header参数。
译工具(如机器翻译API、大型语言模型等),可以在保证翻译效率的同时,提升翻译质量,并根据实际场景和用户需求进行灵活调整。 本章将详细介绍如何利用不同的节点构建一个高效的多语言文本翻译工作流,并确保不同用户需求(如普通对话、文本翻译)能够被准确识别和处理。 工作流节点设计 选取工
大模型概念类问题 如何对盘古大模型的安全性展开评估和防护 训练智能客服系统大模型需考虑哪些方面
id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID还可通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/v3/projects”,其中{Endp
"列名2"],默认设置为[],表示所有特征都用于训练。 标准化列 指定需要进行最大最小值标准化处理的数值特征的列表。格式为["列名1","列名2"],默认设置为[],表示没有特征需要标准化。标准化将特征值缩放到0到1的范围,处理分布差异较大的数值特征。 预测目标列 指定预测目标变量的列名,仅支持单目标变量预