检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA
--local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的
开发阶段,ModelArts也致力于提升AI开发体验,降低开发门槛。ModelArts Standard开发环境,以云原生的资源使用和开发工具链的集成,目标为不同类型AI开发、探索、教学用户,提供更好云化AI开发体验。 ModelArts Standard Notebook云上云下,无缝协同
看csv文件及图片等功能。可以说,JupyterLab是开发者们下一阶段更主流的开发环境。 ModelArts支持通过JupyterLab工具在线打开Notebook,开发基于PyTorch、TensorFlow和MindSpore引擎的AI模型。具体操作流程如图1 使用JupyterLab在线开发调试代码所示。
并行文件系统。 在ModelArts运行态的Notebook容器中,采用动态挂载特性,将OBS对象存储模拟成本地文件系统。其本质是通过挂载工具,将对象协议转为POSIX文件协议。挂载后应用层可以在容器中正常操作OBS对象。 动态挂载适用于哪些使用场景 场景1:数据集预览和操作,将
ModelArts上进行训练比本地训练多了一步OBS和容器环境的数据迁移工作。 增加了和OBS交互工作的整个训练流程如下: 建议使用OBSutil作为和OBS交互的工具,如何在本机安装obsutil可以参考obsutil安装和配置。 训练数据、代码、模型下载。(本地使用硬盘挂载或者docker cp,在ModelArts上使用OBSutil)
本教程需要使用到的AscendCloud-3rdLLM-xxx.zip软件包中的关键文件介绍如下。 ├──llm_tools #推理工具包 ├──llm_evaluation #推理评测代码包 ├──benchmark_eval # 精度评测
使用VS Code创建并调试训练作业 由于AI开发者会使用VS Code工具开发算法或模型,为方便快速将本地代码提交到ModelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。DeepSpe
kv-cache-int8量化支持的模型请参见支持的模型列表和权重文件。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
列表和权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0
权重文件。 本章节介绍如何在Notebook使用tensorRT量化工具实现推理量化。 Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA
Megatron-Deepspeed Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工具:Megatron-LM和DeepSpeed,可在具有分布式计算能力的系统上进行训练,并且充分利用了多个GPU和深度学习加速器的并行处理能力。可以高效地训练大规模的语言模型。
丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/JupyterLab等开发工具中调试分布式训练。 约束限制 总览页面打开的CodeLab不支持此项功能,但是如果用户在AI Hub中打开了可用的案例,会自动跳转到CodeLab中,此时是可以使用这项功能的。
Server资源 场景描述 本文主要介绍如何配置DCGM监控。DCGM是用于管理和监控基于Linux系统的NVIDIA GPU大规模集群的一体化工具,提供多种能力,包括主动健康监控、诊断、系统验证、策略、电源和时钟管理、配置管理和审计等。 前提条件 裸金属服务器需要安装driver、c
使用Prometheus查看Lite Cluster监控指标 背景信息 Prometheus是一款开源监控工具,ModelArts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 使用说明 该功能为白名单功能,如需要使用,请联系提交工单开通此功能。
MaaS使用场景和使用流程 ModelArts Studio大模型即服务平台(后续简称为MaaS服务),提供了简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,降低企业AI落地的成本与难度。 当您第一次使用MaaS服务时,可以参考快速入门使用ModelArts
件夹中。 下载完成后,将数据上传至SFS相应目录中。由于数据集过大,推荐先通过obsutil工具将数据集传到OBS桶后,再将数据集迁移至SFS。 在本机机器上运行,通过obsutil工具将本地数据集传到OBS桶。 # 将本地数据传至OBS中 # ./obsutil cp ${数据集所在的本地文件夹路径}
知识。ModelArts Studio大模型即服务平台(后续简称为MaaS服务)作为一个面向客户的大模型服务化平台,提供简单易用的模型开发工具链,支持大模型定制开发,让模型应用与业务系统无缝衔接,显著降低了企业AI落地的成本与难度。 业界主流开源大模型覆盖全 MaaS集成了业界主
接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: