检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
步骤7:空间成员创建作业 创建多方安全计算作业 空间成员登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 多方安全计算”,在页面上方选择作业创建的空间后,单击“创建”。 图1 创建多方安全计算作业 在弹出的对话框中,输入作业“名称”和“描述”信息后单击“确定”。
隐私保护等级:高级别时,默认启用高安全性的隐私计算的算法保障计算过程的安全,例如秘密分享加密、PSI等,但可能会影响性能以及部分作业正常执行。低级别时,使用国际标准的对称和非对称加密结合方式,在安全沙箱内进行解密计算。性能和灵活度较高。
在信息核验过程中,通过隐私计算技术实现多方黑名单数据共享,对电诈、洗钱、骗贷等行为的黑名单用户进行安全求交、匿踪查询,能够有效提升客户背景调查的安全可信程度。 现有两家企业A、B,双方决定通过TICS平台实现黑名单数据共享,通过隐私求交作业计算两方黑名单ID交集。
可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制
图1 乳腺癌预测研究应用场景示意 作业发起方通过计算节点上传数据、待训练模型的定义文件; 作业发起方配置TICS的横向联邦学习作业,启动训练; 模型参数、梯度数据在TICS提供的安全聚合节点中进行加密交换; 训练过程中,各参与方计算节点会在本地生成子模型,由TICS负责安全聚合各子模型的参数
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
计算节点API 获取用户token 可信计算节点管理 连接器管理 数据集注册管理 任务管理 通知管理 数据集管理 多方安全计算作业管理 可信联邦学习作业管理 联邦预测作业管理 作业实例管理 联邦学习作业管理
纵向联邦建模场景 使用TICS多方安全计算进行联合样本分布统计 使用TICS可信联邦学习进行联邦建模 使用TICS联邦预测进行新数据离线预测 父主题: 使用场景
基于TICS实现端到端的企业积分查询作业 简介 阶段一:数据发布 阶段二:隐私规则防护 阶段三:审批防护 阶段四:基本计算能力验证 阶段五:基于MPC算法的高安全级别计算 阶段六:统计型作业的差分隐私保护
connector_query_type 否 String 连接器类型,主要分为多方安全计算连接器和可信联邦学习连接器。
图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信联邦学习作业
图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 联邦预测作业
表1 常用最佳实践 实践 描述 基于TICS实现端到端的企业积分查询作业 本最佳实践提供了通过统一制定隐私规则,使用TICS进行安全计算,避免真实数据被窃取的使用案例。 父主题: 快速入门
图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 隐私求交
图2 字段相加 通过查看字段是否可见,以及字段用途,能够确认该字段的应用是否符合自己的安全预期。 父主题: 基于TICS实现端到端的企业积分查询作业
开启初筛后,做PSI或者聚合join前,会将提前做过安全处理的小表id放置到大表代理侧,进行提前过滤和初筛。大大减少了需要在网络中消耗的时间,避免传递不需要输出的数据。
图7 作业计算过程信息详情(截图为多方安全计算作业示例,请以实际作业为准) 父主题: 可信数据交换
企业A和企业B可以使用TICS服务的实时隐匿查询功能,既能满足实时业务高效低延迟的业务需求,又能避免暴露企业A想要查询哪个用户的隐私安全风险。 父主题: 外部数据共享
图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接。 图3 输入信息 建立完成后,连接器显示正常说明连接正常。 图4 连接正常 进入数据管理,进行数据集发布。 图5 新建数据管理 填写参数信息。
多方安全计算作业中的作业详情信息,即SQL语句也会参与审计,但该信息属于敏感信息不会上链。 父主题: 计算节点管理