已找到以下 10000 条记录
  • AI、机器学习深度学习关系

    作者: andyleung
    1560
    1
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 深度学习随机取样、学习

    得到更好性能。学习率,即参数到达最优值过程速度快慢,当你学习率过大,即下降快,很容易在某一步跨过最优值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法性能表现。可以根据数据集大小来选择合适学习率,当使用平方误差作为成本函数时,随着数据量增多,学

    作者: 运气男孩
    1444
    5
  • 机器学习深度学习简介

    深度学习 1. 深度学习介绍 2. 深度学习原理 3. 深度学习实现 深度学习 1. 深度学习介绍 深度学习(Deep learning)是机器学习一个分支领域,其源于人工 神经网络研究。 深度学习广泛应用在计算机视觉,音频处理,自然语言处理等诸多领 域。 人工神经网络(Artificial

    作者: 南蓬幽
    发表时间: 2022-06-28 07:19:06
    363
    0
  • 深度学习现实应用《深度学习与Mindspore实践》今天你读书了吗?

    换成文本技术。从早期基于模板方法到严格统计模型,再到如今深度模型,语音识别技术已经经历了几代更迭。 图像识别图像识别是深度学习最成功应用之一。深度学习在计算机视觉领域突破发生在2012年,Hinton教授研究小组利用卷积神经网络架构(AlexNet)大幅降低了ImageNet

    作者: QGS
    1026
    2
  • 矩阵向量相乘“深度学习”笔记

    矩阵向量相乘矩阵乘法是矩阵运算中最重要操作之一。两个矩阵AB矩阵相乘是第三个矩阵C。为了使乘法可被定义,矩阵A列数必须矩阵B行数相等。如果矩阵A形状是m x n,矩阵B形状是n x p,那么矩阵C形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如

    作者: QGS
    731
    2
  • 深度学习笔记之度量模型深度方式(一)

    第一个观点是基于评估架构所需执行顺序指令数目。假设我们将模型表示为给定输入后,计算对应输出流程图,则可以将这张流程图中最长路径视为模型深度。正如两个使用不同语言编写等价程序将具有不同长度;相同函数可以被绘制为具有不同深度流程图,其深度取决于我们可以用来作为一个步骤函数。图1.3

    作者: 小强鼓掌
    742
    1
  • 机器学习深度学习未来趋势

    机器学习深度学习未来蕴含着无穷可能!越来越多机器人不仅用在制造业,而且在一些其他方面可以改善我们日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 深度学习笔记之度量模型深度方式(二)

     由于并不总是清楚计算图深度或概率模型图深度哪一个是最有意义,并且由于不同的人选择不同最小元素集来构建相应图,因此就像计算机程序长度不存在单一正确值一样,架构深度也不存在单一正确值。另外,也不存在模型多么深才能被修饰为 “深”共识。但相比传统机器学习深度学习研究模型涉及更

    作者: 小强鼓掌
    629
    2
  • 深度学习之切面距离

    本具有相同类别。由于分类器应该对局部因素(对应于流形上移动)变化保持不变,一种合理度量是将点 x1 x2 各自所在流形 M1 M2 距离作为点 x1 x2 之间最近邻距离。然而这可能在计算上是困难(它需要解决一个寻找 M1 M2 最近点对优化问题),一种局部合理的廉价替代是使用

    作者: 小强鼓掌
    424
    1
  • 深度学习笔记之矩阵

    左上的元素,Am,n 表示A 右下元素。我们表示垂直坐标i 中所有元素时,用“:” 表示水平坐标。比如,Ai;: 表示A 中垂直坐标i 上一横排元素。这也被称为A 第i行(row)。同样地,A:;i 表示A 第i列(column)。当我们需要明确表示矩阵中元素时,我们将它们写在用方括号包围起来的数组中: 

    作者: 小强鼓掌
    730
    2
  • 深度学习LSTM模型

    长短期记忆(Long short-term memory, LSTM)是一种特殊RNN,主要是为了解决长序列训练过程中梯度消失和梯度爆炸问题。简单来说,就是相比普通RNN,LSTM能够在更长序列中有更好表现。

    作者: 我的老天鹅
    1892
    10
  • 深度学习

    深度学习是实现机器学习一种技术。早期机器学习研究者中还开发了一种叫人工神经网络算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑启发而来:神经元之间相互连接关系。但是,人类大脑中神经元可以与特定范围内任意神经元连接,而人工神经网络中数据传播要经历不同层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 什么是AI、机器学习深度学习

    也造就了深度学习蓬勃发展,“深度学习”才一下子火热起来。击败李世石Alpha go即是深度学习一个很好示例。GoogleTensorFlow是开源深度学习系统一个比较好实现,支持CNN、RNNLSTM算法,是目前在图像识别、自然语言处理方面最流行深度神经网络模型

    作者: Amber
    11520
    6
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  • 遍历 深度广度遍历算法

    texNum]; //邻接矩阵,可看作边表 int n, e; //图中顶点数n边数e }MGraph; //用邻接矩阵表示类型 //建立邻接矩阵 void CreatMGraph(MGraph *G) { int i

    作者: 肥学
    发表时间: 2022-03-27 15:09:19
    268
    0
  • 基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

    基于CodeArts IDE Online、TensorFlowJupyter Notebook开发深度学习模型

  • Standard自动学习 - AI开发平台ModelArts

    Standard自动学习 ModelArts通过机器学习方式帮助不具备算法开发能力业务开发者实现算法开发,基于迁移学习、自动神经网络架构搜索实现模型自动生成,通过算法实现模型训练参数自动化选择模型自动调优自动学习功能,让零AI基础业务开发者可快速完成模型训练部署。 Mo

  • 机器学习——深度学习(Deep Learning)

    Learning是机器学习中一个非常接近AI领域,其动机在于建立、模拟人脑进行分析学习神经网络,最近研究了机器学习中一些深度学习相关知识,本文给出一些很有用资料心得。 Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,

    作者: 格图洛书
    发表时间: 2021-12-29 16:20:46
    631
    0