已找到以下 10000 条记录
  • 深度学习-语义分割

    而,我们可以轻松地通过重叠方式观察到每个目标。argmax方式也很好理解。如上图所示,每个通道只有0或1,以Person通道为例,红色1表示为Person像素,其他像素均为0。其他通道也是如此,并且不存在同一个像素点在两个以上通道均为1情况。因此,通过argmax就

    作者: @Wu
    642
    0
  • 什么是AI、机器学习深度学习

    也造就了深度学习蓬勃发展,“深度学习”才一下子火热起来。击败李世石Alpha go即是深度学习一个很好示例。GoogleTensorFlow是开源深度学习系统一个比较好实现,支持CNN、RNNLSTM算法,是目前在图像识别、自然语言处理方面最流行深度神经网络模型

    作者: Amber
    11519
    6
  • 深度学习入门》笔记 - 25

    L2惩罚法也是一个经典正则化方法。 它是在原有损失函数基础上,在构造一个新损失函数。(带有惩罚项 是一个超参数)模型集成(model ensemble)可以提供模型预测准确度,思想就是, 先训练大量结构不同模型,通过平均、或投票方式综合所有模型结构,得到最终预测。在实际中,有较大限制,原因很简单,

    作者: 黄生
    20
    1
  • 深度学习之动量

    ssian 矩阵病态条件随机梯度方差。我们通过此图说明动量如何克服这两个问题第一个。等高线描绘了一个二次损失函数(具有病态条件 Hessian 矩阵)。横跨轮廓红色路径表示动量学习规则所遵循路径,它使该函数最小化。我们在该路径每个步骤画一个箭头,表示梯度下降将在该

    作者: 小强鼓掌
    530
    3
  • 深度学习现实应用

    重要成果就是词向量学习。词向量可以看作是一种运用深度神经网络将词转换成隐含空间中一个向量化位置表示方法。将词向量作为循环神经网络输入,能有效利用合成式向量语法对句子短语进行解析。合成式向量语法可以被认为是由循环神经网络实施上下文无关概率语法。另一方面,以长短期

    作者: 角动量
    2054
    4
  • 深度学习特点

    深度学习区别于传统浅层学习深度学习不同在于: (1)强调了模型结构深度,通常有5层、6层,甚至10多层隐层节点;(2)明确了特征学习重要性。也就是说,通过逐层特征变换,将样本在原空间特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征方法相比,

    作者: QGS
    594
    2
  • 深度学习之PCA

    PCA这种将数据变换为元素之间彼此不相关表示能力是PCA一个重要性质。它是消除数据中未知变动因素简单表示实例。在PCA中,这个消除是通过寻找输入空间一个旋转(由 W 确定),使得方差主坐标 z 相关新表示空间基对齐。虽然相关性是数据元素间依赖关系一个重要范畴,但我们对于能够消

    作者: 小强鼓掌
    541
    1
  • 深度学习应用开发》学习笔记-01

    之前好像有听人介绍说吴明辉课程很不错,最近刚好在中国大学APP上看到他一个人工智能相关课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow实践》。是一个入门级别的课程,不需要人工智能基础,不需要太多数学知识,也不需要什么编程经验。我觉得很

    作者: 黄生
    1139
    5
  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5969
    23
  • 机器学习深度学习未来趋势

    机器学习深度学习未来蕴含着无穷可能!越来越多机器人不仅用在制造业,而且在一些其他方面可以改善我们日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 深度学习之推断

    络中遇到训练集确实是替换采样原始训练集一个子集。Bagging集成必须根据所有成员累积投票做一个预测。在这种背景下,我们将这个过程称为推断(inference)。目前为止,我们在介绍BaggingDropout时没有要求模型具有明确概率。现在,我们假定该模型作用是输

    作者: 小强鼓掌
    426
    4
  • 深度学习之Dropout

    out训练集成包括所有从基础网络除去非输出单元后形成子网络。最先进神经网络基于一系列仿射变换非线性变换,我们只需将一些单元输出乘零就能有效地删除一个单元。这个过程需要对模型(如径向基函数网络,单元状态参考值之间存在一定区别)进行一些修改。为了简单起见,我们在这里提出

    作者: 小强鼓掌
    1023
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖图片局部区域矩阵对应每个元素相乘后累加求和。

    作者: 我的老天鹅
    630
    8
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习学习纯优化有什么不同

    J 本身。训练深度模型优化算法通常也会包括一些针对机器学习目标函数特定结构进行特化。通常,代价函数可写为训练集上平均,如J(θ) = E(x,y)∼pˆdata L(f(x; θ), y),中 L 是每个样本损失函数,f(x; θ) 是输入 x 时所预测输出,pˆdata

    作者: 小强鼓掌
    346
    1
  • 深度学习

    深度学习是实现机器学习一种技术。早期机器学习研究者中还开发了一种叫人工神经网络算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑启发而来:神经元之间相互连接关系。但是,人类大脑中神经元可以与特定范围内任意神经元连接,而人工神经网络中数据传播要经历不同层,传播

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 深度学习框架TensorFlow

    种客户端语言下安装运行。截至版本1.12.0,绑定完成并支持版本兼容运行语言为CPython,其它(试验性)绑定完成语言为JavaScript、C++、Java、GoSwift,依然处于开发阶段包括C#、Haskell、Julia、Ruby、RustScala

    作者: QGS
    555
    0
  • 《MXNet深度学习实战》—1.2 深度学习框架

    1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样接口不同语言API,而且拥有详细文档活跃社区,因此设计网络更加灵活高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡分布式训练方面都有很好支持,因此训练模型时间也大大

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型神经网络。而这些大公司也花费了很大精力来维护 TensorFlow、PyTorch 这样庞大深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2