内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 如何理解深度学习中损失函数的作用呢?

    学习AI之前,就非常好奇深度学习模型怎么就能学习到知识呢?好神奇啊,感觉它跟人一样,给它素材就能学好在学习了一段时间的AI理论基础之后,发现深度学习模型的学习跟人是不一样的,一句话来说,深度学习就是拟合数据的过程,给定数据、标签损失函数(有时也称目标函数),然后根据损失值lo

    作者: 天桥调参师
    5805
    15
  • 华为云SCM服务-关于SCM服务整改的通知

    尊敬的华为云客户:因为产品整改原因,华为云SCM服务预计在5月16日~26日暂停销售。在此期间,您仍然可以正常使用已签发的证书(包括下载、推送、吊销等)。预计中国区域5月27日重新开发部分品牌证书购买,国际站时间待定。如您有任何问题,可随时通过工单或者服务热线(950808)与我们联系。感谢您对华为云的支持!

    作者: 华为云客户服务中心
    发表时间: 2019-05-21 15:01:39
    5158
    0
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据监督学习的设定下:关键假设仍然是概率质量高度集中。

    作者: 小强鼓掌
    1053
    2
  • 深度学习之流形学习

    少量点的子集构成的一组流形中,而学习函数中感兴趣输出的变动只位于流形中的方向,或者感兴趣的变动只发生在我们从一个流形移动到另一个流形的时候。流形学习是在连续数值数据无监督学习的设定下被引入的,尽管这个概率集中的想法也能够泛化到离散数据监督学习的设定下:关键假设仍然是概率质量高

    作者: 小强鼓掌
    813
    1
  • 深度学习之多任务学习

    地泛化。展示了多任务学习中非常普遍的一种形式,其中不同的监督任务(给定 x预测 y(i))共享相同的输入 x 以及一些中间层表示 h(share),能学习共同的因素池。该模型通常可以分为两类相关的参数:多任务学习深度学习框架中可以以多种方式进行,该图说明了任务共享相同输入但涉及

    作者: 小强鼓掌
    532
    1
  • 深度学习之方差标准误差

    (standard error),记作 SE(θˆ)。        估计量的方差或标准误差告诉我们,当独立地从潜在的数据生成过程中重采样数据集时,如何期望估计的变化。正如我们希望估计的偏差较小,我们也希望其方差较小。        当我们使用有限的样本计算任何统计量时,真实参数的估计都是

    作者: 小强鼓掌
    944
    0
  • 适合新手的深度学习综述(4)--深度学习方法

    简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型的下一步。这主要用于游戏机器人,解决平常的决策问题。Schmidthuber(2014) 描述了强化学习 (RL) 中深度学习的进展,以及深度前馈神经网络 (FNN) 循环神经网络

    作者: @Wu
    177
    1
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    946
    0
  • 深度学习之构建机器学习算法

    迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数

    作者: 小强鼓掌
    525
    1
  • 图的二种遍历-广度优先遍历深度优先遍历

    图的深度优先遍历 1.树的深度优先遍历 树的深度优先遍历有点类似于先根遍历 首先遍历 1 2 5 6 3  4 7 8 ,它的遍历更趋向于先深层的遍历树。 ​ 编辑 2.图的深度优先遍历 首先我们可以先看一下2,2相邻的是1号结点6号结点。2相邻的第

    作者: 莫浅子
    发表时间: 2022-12-09 03:04:48
    100
    0
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNNLSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    11520
    6
  • 根据“玩转PB级数仓深度调优之依计行事”,对客户sql进行整改案例实践

       客户之前使用其他数仓,最近需要将业务迁移至DWS,客户自己建表并执行相关sql,但一直反馈执行太慢,根据玩转“PB级数仓深度调优之依计行事”老师的认真讲解,我从中找到客户sql优化的解决办法。  下图为客户提供的sql脚本与其explain analyze,(因政策原因对三

    作者: 每天都要有进步
    6005
    6
  • 学习深度学习是否要先学习机器学习

    学习深度学习是否要先学习完机器学习,对于学习顺序不太了解

    作者: 飞奔的野马
    5969
    23
  • 深度学习之构建机器学习算法

    迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w)

    作者: 小强鼓掌
    830
    3
  • 分享深度学习发展的学习范式——混合学习

     这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能

    作者: 初学者7000
    741
    1
  • Google资深工程师深度讲解Go语言-迷宫的广度优先搜索(十二)

    一.广度优先算法 为爬虫实战项目做好准备应用广泛,综合性强面试常见 探索顺序: 上左下右 节点三种状态: 已经发现,但没有探索过 已经发现,并探索完成没有发现 结束条件:(1)走到终点  (2)走到队列为空 maze

    作者: lxw1844912514
    发表时间: 2022-03-26 16:26:18
    335
    0
  • 分享深度学习发展的学习范式——混合学习

        这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因

    作者: 初学者7000
    829
    3
  • 深度学习深陷困境!

    自海量数据深度学习的融合。常见的计算机软件通过定义一组专用于特定工作的符号处理规则来解决难题,例如在文字处理器中编辑文本或在电子表格中执行计算,而神经网络却通过统计近似值从样本中学习来解决难题。由于神经网络在语音识别、照片标记等方面取得了不错的成就,许多深度学习的支持者已经

    作者: 星恒
    250
    3
  • 深度学习之基于梯度的学习

    经网络训练其他任何模型并没有太大区别。计算梯度对于神经网络会略微复杂一些,但仍然可以很高效而精确地实现。会介绍如何用反向传播算法以及它的现代扩展算法来求得梯度。       其他的机器学习模型一样,为了使用基于梯度的学习方法我们必须选择一个代价函数,并且我们必须选择如何表示模

    作者: 小强鼓掌
    833
    2
  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习非监督学习之间的界限。由于缺少标签数据收集标签数据集的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    930
    1