检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算; 支持控制流和数据流的分离,用户无需关心计算任务拆解和组合过程,采用有向无
保存纵向联邦作业 功能介绍 保存纵向联邦作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
删除作业 删除可信联邦学习作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 可信联邦学习作业
联邦学习作业管理 查询联邦学习作业列表 父主题: 空间API
获取纵向联邦作业详情 功能介绍 获取纵向联邦作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
learning_rate 否 Float 学习率,最小值0,最大值1 batch_size 否 Integer 批大小,最小值1 epoch 否 Integer 迭代次数,最小值1 tree_num 否 Integer 树数量,最小值1 tree_depth 否 Integer 树深度,最小值1 split_num
创建可信联邦学习训练型作业 参考步骤创建横向训练型作业创建可信联邦学习训练型作业,运行环境选择ModelArts和PriorityModelArts时,新增的资源配额是使用MA Lite资源池进行训练时,工作负载需要配置的资源参数。 图2 配置参数 父主题: 可信联邦学习作业
执行样本对齐 功能介绍 执行样本对齐 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sampleAlignment 表1 路径参数 参数 是否必选 参数类型
查询样本对齐结果 功能介绍 查询样本对齐结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/sample-alignment-result 表1 路径参数
执行ID选取截断 功能介绍 执行ID选取截断(样本粗筛) 调用方法 请参见如何调用API。 URI POST /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/idTruncation 表1 路径参数 参数
可信联邦学习作业管理 新建联邦学习作业 获取横向联邦学习作业详情 获取纵向联邦作业详情 保存纵向联邦作业 保存横向联邦学习作业 查询联邦学习作业列表 查询特征选择执行结果 删除联邦学习作业 执行横向联邦学习作业 执行纵向联邦模型训练作业 父主题: 计算节点API
参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
查询特征选择执行结果 功能介绍 查询特征选择执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-vertical-jobs/{job_id}/features-selection-result
作业发起方配置TICS的横向联邦学习作业,启动训练; 模型参数、梯度数据在TICS提供的安全聚合节点中进行加密交换; 训练过程中,各参与方计算节点会在本地生成子模型,由TICS负责安全聚合各子模型的参数,得到最终的模型; 空间的整体配置通过空间管理员进行统一管理。 父主题: 横向联邦学习场景
查询执行结果 功能介绍 查询学习类型作业执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/job-instances/{instance_id}/result 表1 路径参数 参数 是否必选 参数类型
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
乳腺癌数据集作业结果 本节实验包含了如下三个部分:(1)训练轮数对联邦学习模型分类性能的影响;(2)迭代次数对联邦学习模型分类性能的影响;(3)参与方数据量不同时,本地独立训练对比横向联邦的模型性能。 不同训练参数对模型准确率、训练时长的影响 训练轮数对模型准确率的影响(迭代次数固定为20)