已找到以下 10000 条记录
  • 分享深度学习发展的学习范式——混合学习

     这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因为它能

    作者: 初学者7000
    740
    1
  • 深度学习深陷困境!

    自海量数据深度学习的融合。常见的计算机软件通过定义一组专用于特定工作的符号处理规则来解决难题,例如在文字处理器中编辑文本或在电子表格中执行计算,而神经网络却通过统计近似值从样本中学习来解决难题。由于神经网络在语音识别、照片标记等方面取得了不错的成就,许多深度学习的支持者已经

    作者: 星恒
    249
    3
  • 分享深度学习发展的学习范式——混合学习

        这种学习范式试图去跨越监督学习与无监督学习边界。由于标签数据的匮乏收集有标注数据集的高昂成本,它经常被用于商业环境中。从本质上讲,混合学习是这个问题的答案。我们如何才能使用监督学习方法来解决或者链接无监督学习问题?例如这样一个例子,半监督学习在机器学习领域正日益流行,因

    作者: 初学者7000
    829
    3
  • 深度学习之方差标准误差

    (standard error),记作 SE(θˆ)。        估计量的方差或标准误差告诉我们,当独立地从潜在的数据生成过程中重采样数据集时,如何期望估计的变化。正如我们希望估计的偏差较小,我们也希望其方差较小。        当我们使用有限的样本计算任何统计量时,真实参数的估计都是

    作者: 小强鼓掌
    944
    0
  • 适合新手的深度学习综述(4)--深度学习方法

    简要介绍了无监督学习深度架构,并详细解释了深度自编码器。4.3 深度强化学习强化学习使用奖惩系统预测学习模型的下一步。这主要用于游戏机器人,解决平常的决策问题。Schmidthuber(2014) 描述了强化学习 (RL) 中深度学习的进展,以及深度前馈神经网络 (FNN) 循环神经网络

    作者: @Wu
    176
    1
  • 什么是深度学习深度学习与Mindspore实践》今天你读书了吗?

    深度学习是支持人工智能发展的核心技术,云服务则是深度学生的主要业务之一。深度学习的模型有很多,目前开发者最常用的深度学习模型与架构包括卷积神经网络 (CNN)、深度置信网络 (DBN)、受限玻尔兹曼机 (RBM)、递归神经网络 (RNN & LSTM & GRU)、递归张量神经网络

    作者: QGS
    945
    0
  • 分享深度学习发展的混合学习

      这种学习范式试图跨越监督学习非监督学习之间的界限。由于缺少标签数据收集标签数据集的高成本,它通常用于业务环境中。从本质上讲,混合学习就是这个问题的答案。我们如何使用监督学习方法来解决或联系非监督学习问题?例如,半监督学习在机器学习领域正变得越来越流行,因为它可以很好地处理

    作者: 初学者7000
    929
    1
  • Google资深工程师深度讲解Go语言-迷宫的广度优先搜索(十二)

    一.广度优先算法 为爬虫实战项目做好准备应用广泛,综合性强面试常见 探索顺序: 上左下右 节点三种状态: 已经发现,但没有探索过 已经发现,并探索完成没有发现 结束条件:(1)走到终点  (2)走到队列为空 maze

    作者: lxw1844912514
    发表时间: 2022-03-26 16:26:18
    335
    0
  • 深度学习之构建机器学习算法

    迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数

    作者: 小强鼓掌
    525
    1
  • 什么是AI、机器学习深度学习

    也造就了深度学习的蓬勃发展,“深度学习”才一下子火热起来。击败李世石的Alpha go即是深度学习的一个很好的示例。Google的TensorFlow是开源深度学习系统一个比较好的实现,支持CNN、RNNLSTM算法,是目前在图像识别、自然语言处理方面最流行的深度神经网络模型

    作者: Amber
    11519
    6
  • 如何用 Python fast.ai 做图像深度迁移学习【转】

     本文带你认识一个优秀的新深度学习框架,了解深度学习中最重要的3件事。框架看到这个题目,你可能会疑惑:老师,你不是讲过如何深度学习做图像分类了吗?迁移学习好像也讲过了啊!说得对!我要感谢你对我专栏的持续关注。我确实讲过深度学习做图像分类,以及迁移学习这两项内容。写这篇文章,是因为最近因为科研的关系,发现了

    作者: 林欣
    56
    3
  • 深度学习之动量

    但其学习过程有时会很慢。动量方法 (Polyak, 1964) 旨在加速学习,特别是处理高曲率、小但一致的梯度,或是带噪声的梯度。动量算法积累了之前梯度指数级衰减的移动平均,并且继续沿该方向移动。动量的效果。动量的主要目的是解决两个问题:Hessian 矩阵的病态条件随机梯度

    作者: 小强鼓掌
    530
    3
  • 深度学习之构建机器学习算法

    迭代数值优化过程,如梯度下降等。组合模型,损失函数优化算法来构建学习算法的配方同时适用于监督学习无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w)

    作者: 小强鼓掌
    830
    3
  • 深度学习之超参数验证集

             大多数机器学习算法都有设置超参数,可以用来控制算法行为。超参数的值不是通过学习算法本身学习出来的(尽管我们可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数)。有一个超参数:多项式的次数,作为容量超参数。控制权重衰减程度的 是另一个超参数。 

    作者: 小强鼓掌
    935
    4
  • 深度学习之基于梯度的学习

    经网络训练其他任何模型并没有太大区别。计算梯度对于神经网络会略微复杂一些,但仍然可以很高效而精确地实现。会介绍如何用反向传播算法以及它的现代扩展算法来求得梯度。       其他的机器学习模型一样,为了使用基于梯度的学习方法我们必须选择一个代价函数,并且我们必须选择如何表示模

    作者: 小强鼓掌
    831
    2
  • “智能基座”产教融合协同育人基地

    本实验以某数据中心MySQL数据库迁移为例,指导用户掌握DRS迁移流程。 立即实验 基于深度学习算法的语音识别 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练 利用新型的人工智能(深度学习)算法,结合清华大学开源语音数据集THCHS30进行语音识别的实战演练。

  • 如何看待华为开源的深度学习框架 MindSpore?

    作者: DevFeng
    2795
    6
  • 深度学习GRU

    Gated Recurrent Unit – GRU 是 LSTM 的一个变体。他保留了 LSTM 划重点,遗忘不重要信息的特点,在long-term 传播的时候也不会被丢失。

    作者: 我的老天鹅
    1261
    13
  • 深度学习=炼金术?

    深度学习是目前人工智能最受关注的领域,但黑盒学习法使得深度学习面临一个重要的问题:AI能给出正确的选择,但是人类却并不知道它根据什么给出这个答案。本期将分享深度学习的起源、应用待解决的问题;可解释AI的研究方向进展。

    主讲人:华为MindSpore首席科学家,陈雷
    直播时间:2020/03/27 周五 14:00 - 15:00
  • 深度学习识别滑动验证码

    本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂

    作者: 崔庆才丨静觅
    发表时间: 2021-12-31 16:52:28
    945
    0