已找到以下 10000 条记录
  • 深度学习之“深度

    经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原

    作者: ypr189
    1571
    1
  • 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知

    产品公告 > 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 华为云深度学习服务于2019年5月30日00:00(北京时间)退市通知 2019-04-30 尊敬的华为云客户: 华为云计划于2019/5/30 00:00(北京时间)将深度学习服务正式退市。 华

  • 深度学习

    全面地讲述深度学习的历史超出了本书的范围。然而,一些基本的背景对理解深度学习是有用的,深度学习经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习表现为联结主义(connectionism),直到

    作者: QGS
    965
    4
  • 等保安全_等保二级_等保合规_等保整改-华为云

    工单申请获取。 如何获取华为云等保合规白皮书? 如果您需要华为云等保合规白皮书,请您联系客户经理或单击华为云等保合规白皮书下载,注册/登录华为云后,提交信息并下载白皮书。 更多关于华为云安全的信息,请前往信任中心了解详情。 如何过等保? 您需要先对系统进行定级备案,根据等保有关

  • 深度学习学习纯优化有什么不同

    时所预测的输出,pˆdata 是经验分布。监督学习中,y 是目标输出。在本章中,我们会介绍不带正则化的监督学习,L的变量是 f(x; θ) y。不难将这种监督学习扩展成其他形式,如包括 θ 或者 x 作为参数,或是去掉参数 y,以发展不同形式的正则化或是无监督学习

    作者: 小强鼓掌
    346
    1
  • 等保安全_等保三级_等保备案_等保整改-华为云

    等保安全_等保三级_等保备案_等保整改 等保安全_等保三级_等保备案_等保整改 等级保护是网络运营者的法律义务 服务咨询 产品介绍 等保合规安全解决方案 热门 等级保护是网络运营者的法律义务 等保合规套餐推荐 优惠 省时省心省力,等保整改优选 等保安全介绍 等保安全 - 全栈安全防护体系

  • 深度学习应用开发学习

    破——国际跳棋、国际象棋围棋。这些历史事件不仅展示了人工智能的演进,也体现了其在系统性思维上的挑战。在机器学习领域,我学习了有监督学习、无监督学习、半监督学习强化学习等概念。特别是强化学习,它通过奖励惩罚机制进行学习,非常适合棋类游戏。而无监督学习中的聚类算法,让我意识到它

    作者: 黄生
    22
    0
  • 机器学习深度学习

    机器学习(Machine Learning,ML)是人工智能的子领域,也是人工智能的核心。它囊括了几乎所有对世界影响最大的方法(包括深度学习)。机器学习理论主要是设计分析一些让计算机可以自动学习的算法。举个例子,假设要构建一个识别猫的程序。传统上如果我们想让计算机进行识别,需要

    作者: QGS
    678
    2
  • 深度学习学习

    ϵ0 的 1%。主要问题是如何设置 ϵ0。若 ϵ0 太大,学习曲线将会剧烈振荡,代价函数值通常会明显增加。温和的振荡是良好的,容易在训练随机代价函数(例如使用 Dropout 的代价函数)时出现。如果学习率太小,那么学习过程会很缓慢。如果初始学习率太低,那么学习可能会卡在一个相当高的

    作者: 小强鼓掌
    454
    2
  • 深度学习

    使用深度学习方法处理计算机视觉问题的过程类似于人类的学习过程:我们搭建的深度学习模型通过对现有图片的不断学**结出各类图片的特征,最后输出一个理想的模型,该模型能够准确预测新图片所属的类别。图1-2展示了两个不同的学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 深度学习是什么?

    学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂的机器学习算法,在语音图像识别方面取得的效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    823
    2
  • 深度学习

    深度学习是机器学习的一种,而机器学习是实现人工智能的必经路径。深度学习的概念源于人工神经网络的研究,含多个隐藏层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。研究深度学习的动机在于建立模拟人脑进行分析学

    作者: QGS
    662
    1
  • 深度学习深度学习界以外的微分

    深度学习界在某种程度上已经与更广泛的计算机科学界隔离开来,并且在很大程度上发展了自己关于如何进行微分的文化态度。更一般地,自动微分(automatic differentiation)领域关心如何以算法方式计算导数。这里描述的反向传播算法只是自动微分的一种方法。它是一种称为反向模式累加(reverse

    作者: 小强鼓掌
    438
    0
  • 什么是深度学习

    是说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图中的

    作者: 角动量
    1546
    5
  • 深入浅出广度深度优先搜索算法

    算法是基于特定数据结构之上的,深度优先搜索算法广度优先搜索算法都是基于“图”这种数据结构的。 树是图的一种特例(连通无环的图就是树)。 图上的搜索算法,最直接的理解就是,在图中找出从一个顶点出发,到另一个顶点的路径。具体方法有很多,两种最简单、最“暴力”的深度优先、广度优先搜索,还有 A*、IDA*

    作者: 嵌入式视觉
    发表时间: 2023-03-25 17:40:02
    160
    0
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习”的一个**子集**, 相比其他学习方法, 使用了更多的参数、模型也更复杂, 从而使得模型对数据的理解更加深人, 也更加智能。 传统机器学习是分步骤来进行的, 每一步的最优解不一定带来结果的最优解;

    作者: 黄生
    348
    1
  • 深度学习之机器学习基础

    须在学习算法外设定);我们将讨论如何使用额外的数据设置超参数。机器学习本质上属于应用统计学,更多关注于如何用计算机统计地估计复杂函数,不太关注为这些函数提供置信区间;因此我们会探讨两种统计学的主要方法:频率估计贝叶斯推断。大部分机器学习算法可以分成监督学习无监督学习两类;我们

    作者: 小强鼓掌
    841
    2
  • 等保二级解决方案

    SecMaster用来对攻击事件、威胁告警攻击源头进行分类统计综合分析,为用户呈现出全局安全攻击态势;识别云服务日志中的潜在威胁,并对检测出的威胁告警进行统计 漏洞管理服务 CodeArts Inspector,通过实时持续资产评估,提供安全风险量化与在线分析处置能力,帮助组织快速感知响应漏洞,提升漏洞维护修复效率

  • 深度学习学习算法

            机器学习算法是一种可以从数据中学习的算法。然而,我们所谓的 “学习”是什么意思呢?Mitchell (1997) 提供了一个简洁的定义:“对于某类任务 T 性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量

    作者: 小强鼓掌
    944
    0
  • 机器学习深度学习

    有趣的是,二十一世纪初,连接主义学习又卷上重来,掀起了以 “深度学习”为名的热潮.所谓深度学习,狭义地说就是 “很多层 " 的神经网络.在若干测试竞赛上,尤其是涉及语音、 图像等复杂对象的应用中,深度学习技术取得了优越性能以往机器学习技术在应用中要取得好性能,对使用者的要求较高;而深度学习技术涉及的模型复杂度非常高,以至千只要下工夫

    作者: ypr189
    731
    1