已找到以下 10000 条记录
  • 深度学习入门》笔记 - 12

    学习步长$\alpha$是一个很重要的参数。 如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值步长。

    作者: 黄生
    276
    1
  • 深度学习入门》笔记 - 08

    (pred)) print('w=3时,残差平方:'+str(round(rss,ndigits=3))) print('w=3时,RSS(w)的梯度:'+str(grad)) #w=3时,预测值:1.5 #w=3时,残差平方:0.245 #w=3时,RSS(w)的梯度:0.35

    作者: 黄生
    148
    3
  • 什么是深度学习

    说,相比于传统机器学习算法需要提供人工定义的特征,深度学习可以自己学习如何提取特征。因此,相比于传统的机器学习算法,深度学习并不依赖复杂且耗时的手动特征工程。 深度学习中的“深度”体现在将数据转换为所需要数据的层数之深。给定模型进行数据输入,可以将描述模型如何得到输出的流程图中的

    作者: HWCloudAI
    发表时间: 2020-12-15 14:55:46
    3574
    0
  • 深度学习训练过程

    无监督训练过程,这也是传统神经网络区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使得输出输入差别最小的三层神经网络的隐层,由于模型容量的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而

    作者: QGS
    539
    1
  • 深度学习入门》笔记 - 05

    接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式:

    作者: 黄生
    145
    3
  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  • 深度学习的现实应用《深度学习与Mindspore实践》今天你读书了吗?

    词向量的学习。  医疗领域深度学习算法可以发现人类无法捕捉到的特征。研究人员利用这些算法对细胞图像进行分类,建立基因组连接,加速药物发明周期。在医疗领域,深度卷积神经网络被应用于癌细胞分类、病变检测、器官分割图像增强等医疗图像分析金融领域,深度学习被应用于金融欺诈检测反洗钱等

    作者: QGS
    1026
    2
  • 深度学习入门》笔记 - 01

    之前学了一个深度学习应用开发,学了一段时间,后来就没学了。 确实是"靡不有初,鲜克有终",现在不愿意再继续之前的学。我又找了一本书从头开始,这本书的名字是深度学习入门与TensorFlow实践>。 `数(scalar)`是一个数字。 简直是废话。 不过这才刚开始嘛。 多个数字有序

    作者: 黄生
    283
    1
  • 深度学习框架有哪些?

    深度学习框架有哪些?各有什么优势?

    作者: 可爱又积极
    759
    6
  • Buffer Pool缓存页不够时,如何淘汰缓存?

    现有两个缓存页: 一个缓存页的数据,经常被修改查询,都可以操作缓存,不需要从磁盘加载数据,这那缓存命中率就很高。这种高级员工就是啥脏活累活,都会接受。 另一个缓存页里的数据,刚从磁盘加载到缓存页后,被修改查询过1次,之后100次请求再没有一次是修改查询该缓存页数据的,那这缓存命中率就

    作者: JavaEdge
    发表时间: 2022-02-05 02:38:19
    813
    0
  • 深度学习典型模型

    型的深度学习模型有卷积神经网络( convolutional neural network)、DBN堆栈自编码网络(stacked auto-encoder network)模型等,下面对这些模型进行描述。 卷积神经网络模型 在无监督预训练出现之前,训练深度神经网络通常非常困难

    作者: 某地瓜
    1673
    1
  • 深度学习: 学习率 (learning rate)

             深度学习: 学习率 (learning rate)    作者:liulina603        致敬 原文:https://blog.csdn.net/liulina603/article/details/80604385   深度学习: 学习率 (learning

    作者: 一颗小树x
    发表时间: 2020-12-03 23:53:24
    3956
    0
  • 深度学习的华为实践之路

    来自华为云BU的技术规划负责人方帆给大家介绍了华为AI技术储备现状,以及华为深度学习技术在公司内部的创新与实践。

    播放量  24143
  • 深度学习之主成分分析

    我们看到PCA算法提供了一种压缩数据的方式。我们也可以将PCA视为学习数据表示的无监督学习算法。这种表示基于上述简单表示的两个标准。PCA学习一种比原始输入低维的表示。它也学习了一种元素之间彼此没有线性相关的表示。这是学习表示中元素统计独立标准的第一步。要实现完全独立性,表示学习算法必须也去掉变量间的非线性关系。PCA将输入

    作者: 小强鼓掌
    630
    1
  • 【问答官】学习深度学习需要懂的数据结构算法有哪些?

    想要从数据结构算法的层面去理解深度学习,需要做哪些尝试?

    作者: Felix666
    1033
    4
  • 深度学习入门》笔记 - 16

    这个例子可以看到,神经网络可以先通过隐藏层学习数据的不同特征,再根据隐藏层得到的特征做出更好的预测。也就是说通过增加隐藏层,神经网络可以找到输入层因变量之间更复杂的关系;而不通过隐藏层,这种关系无法表达。同时可以通过增加隐藏层的数量每个隐藏层的节点数,来处理更加复杂的问题。拥

    作者: 黄生
    37
    4
  • 深度学习之提前终止

    时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性简单性。

    作者: 小强鼓掌
    325
    0
  • 浅谈深度学习常用术语

    深度学习常用术语· 样本(sample)或输入(input)或数据点(data point):训练集中特定的实例。我们在上一章中看到的图像分类问题,每个图像都可以被称为样本、输入或数据点。· 预测(prediction)或输出(output):由算法生成的值称为输出。例如,在先前

    作者: QGS
    22
    0
  • 深度学习入门》笔记 - 18

    网络的目的是建立输入层与输出层之间的关系,进而利用建立的关系得到预测值。通过增加隐藏层,神经网络可以找到输入层与输出层之间较复杂的关系。深度学习是拥有多个隐藏层的神经网络,在神经网络中,我们通过正向传播算法得到预测值,并通过反向传播算法得到参数梯度,然后利用梯度下降法更新参数,使

    作者: 黄生
    23
    1
  • 深度学习模型轻量化

    MNN等。主要包括编译优化、缓存优化、稀疏存储计算、NEON指令应用、算子优化等3. 硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。

    作者: 可爱又积极
    1259
    4