检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
Gallery的AI说模块为开发者提供自由分享各类AI领域内知识和经验的平台。开发者既可以发布个人技术文章,也可以阅读和学习他人分享的技术文章。 案例库介绍 AI Gallery的案例库是面向场景化交付的AI资产的组合和使用案例。案例中沉淀了基于业务场景的AI知识、经验和部分通用的业务逻
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: ①更新transformes和tokenizers版本
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本
Standard 面向AI开发者的一站式开发平台, 提供了简洁易用的管理控制台,包含自动学习、数据管理、开发环境、模型训练、模型管理、部署上线等端到端的AI开发工具链,实现AI全流程生命周期管理。 面向有AI开发平台诉求的用户。 ModelArts MaaS 提供端到端的大模型生产工具链和昇
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
于续费的信息,请参见续费概述。 费用账单 您可以在“费用中心 > 账单管理”查看资源相关的流水和明细账单,以便了解您的消费情况。如需了解具体操作步骤,请参见费用账单。 欠费 在使用云服务时,账户的可用额度小于待结算的账单,即被判定为账户欠费。欠费后,可能会影响云服务资源的正常运行
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 必须修改,指定每个设备的训练批次大小。 gradient_accumulation_steps 8 指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本
控制等功能,可以帮助您安全的控制云服务资源的访问。如果华为账号已经能满足您的要求,不需要通过IAM对用户进行权限管理,您可以跳过本章节,不影响您使用ModelArts服务的其他功能。 IAM是提供权限管理的基础服务,无需付费即可使用,您只需要为您账号中的资源进行付费。 通过IAM
Workflow中所有出现占位符相关的配置对象时,均需要设置默认值,或者直接使用固定的数据对象 方法的执行依赖于Workflow对象的名称:当该名称的工作流不存在时,则创建新工作流并创建新执行;当该名称的工作流已存在时,则更新存在的工作流并基于新的工作流结构创建新的执行 workflow.release_and_run()
计费项 自动学习/Workflow计费项 数据管理计费项 开发环境计费项 模型训练计费项 模型管理计费项 推理部署计费项 专属资源池计费项
编排Workflow Workflow的编排主要在于每个节点的定义,您可以参考创建Workflow节点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。
memoryUtil*100, gpu.memoryTotal)) 注:用户在使用pytorch/tensorflow等深度学习框架时也可以使用框架自带的api进行查询。 父主题: Standard Notebook
个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。 父主题: 开发Workflow命令参考
如果是在专属资源池部署服务,在满足模型需求的前提下,尝试选用更小的容器规格或自定义规格,进行服务部署; 如果当前资源池的资源确实不够,也可以考虑将资源池扩容后再进行服务部署。公共资源池扩容,请联系系统管理员。专属资源池扩容,可参考扩缩容资源池。 如果磁盘空间不够,可以尝试重试,使实例调度到其
tory/data 【可选】dataset_info.json配置文件所属的绝对路径;如使用自定义数据集,yaml配置文件需添加此参数。 是否选择加速深度学习训练框架Deepspeed,可参考表1选择不同的框架。 是,选用ZeRO (Zero Redundancy Optimizer)优化器。