检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
本课程由台湾大学李宏毅教授2022年开发的课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。
在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之的是,在单个步骤中我们训练一小部分的子网络,参数共享会使得剩余的子网络也能有好的参数设定
处理。Dropout提供了一种廉价的Bagging集成近似,能够训练和评估指数级数量的神经网络。具体而言,Dropout训练的集成包括所有从基础网络除去非输出单元后形成的子网络。最先进的神经网络基于一系列仿射变换和非线性变换,我们只需将一些单元的输出乘零就能有效地删除一个单元。这
卷积操作就是filter矩阵跟filter覆盖的图片局部区域矩阵对应的每个元素相乘后累加求和。
任务上得到优越的性能。至今,基于卷积神经网络的模式识别系统是最好的实现系统之一,尤其在手写体字符识别任务上表现出非凡的性能。 深度信任网络模型 DBN可以解释为贝叶斯概率生成模型,由多层随机隐变量组成,上面的两层具有无向对称连接,下面的层得到来自上一层的自顶向下的有向连接,最底层
限速。负责任的简化学习的不仅使模型足够轻量级以供使用,而且确保它能够适应数据集中没有出现过的角落情况。在深度学习的研究中,简化学习可能是最不受关注的,因为“我们通过一个可行的架构尺寸实现了良好的性能” 并不像 “我们通过由数千千万万个参数组成的体系结构实现了最先进的性能”一样吸引
TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief 。Tensorflow拥有多层级结构,可部署于各
Attention,即Attention输出的向量分布是一种one-hot的独热分布或是soft的软分布,直接影响上下文的信息选择。加入Attention的原因:1、当输入序列非常长时,模型难以学到合理的向量表示2、序列输入时,随着序列的不断增长,原始根据时间步的方式的表现越来越差,由于原始的时间步模型设计的结构有缺
在深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年
神经网络模型建立好了之后,必然要进行模型的评估来了解神经网络的表现。 神经网络的因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应的模型误差的定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate
1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样的接口和不同语言的API,而且拥有详细的文档和活跃的社区,因此设计网络更加灵活和高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡和分布式训练方面都有很好的支持,因此训练模型的时间也大大
区别最大的部分,可以看作是特征学习过程。具体的,先用无标定数据训练第一层,训练时先学习第一层的参数,这层可以看作是得到一个使得输出和输入差别最小的三层神经网络的隐层,由于模型容量的限制以及稀疏性约束,使得得到的模型能够学习到数据本身的结构,从而得到比输入更具有表示能力的特征;在学
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着tens
No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解
有监督学习,无监督学习,半监督学习,强化学习。强化学习说的非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习的典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型的例子就是超市里货架商品摆放,
说,各种深度学习框架已经提供了我们所需的各种颜料。我们要做的,就是利用不同的颜料,在空白的纸上,一笔一划画出我们所需的网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中的点点滴滴
合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量模型定义为重建函数 r(x)
深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。
合模型,损失函数和优化算法来构建学习算法的配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习的。无监督学习时,我们需要定义一个只包含 X 的数据集,一个合适的无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA的第一个主向量:J(w) = Ex∼pˆdata
2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就是先大步快速的到达底部附近,再小步寻找最底部。学习率是学习开始之前就设置的,叫超参