已找到以下 10000 条记录
  • 深度学习简介

    本课程由台湾大学李宏毅教授2022年开发课程,主要介绍机器学习基本概念简介、深度学习基本概念简介。

  • 深度学习之推断

    在Bagging情况下,每一个模型在其相应训练集上训练到收敛。在Dropout情况下,通常大部分模型都没有显式地被训练,因为通常父神经网络会很大,以致于到宇宙毁灭都不可能采样完所有的子网络。取而代之是,在单个步骤中我们训练一小部分子网络,参数共享会使得剩余子网络也能有好参数设定

    作者: 小强鼓掌
    426
    4
  • 深度学习之Dropout

    处理。Dropout提供了一种廉价Bagging集成近似,能够训练和评估指数级数量神经网络。具体而言,Dropout训练集成包括所有从基础网络除去非输出单元后形成子网络。最先进神经网络基于一系列仿射变换和非线性变换,我们只需将一些单元输出乘零就能有效地删除一个单元。这

    作者: 小强鼓掌
    1023
    2
  • 深度学习卷积操作

    卷积操作就是filter矩阵跟filter覆盖图片局部区域矩阵对应每个元素相乘后累加求和。

    作者: 我的老天鹅
    630
    8
  • 深度学习典型模型

    任务上得到优越性能。至今,基于卷积神经网络模式识别系统是最好实现系统之一,尤其在手写体字符识别任务上表现出非凡性能。 深度信任网络模型 DBN可以解释为贝叶斯概率生成模型,由多层随机隐变量组成,上面的两层具有无向对称连接,下面的层得到来自上一层自顶向下有向连接,最底层

    作者: 某地瓜
    1673
    1
  • 分享深度学习未来发展学习范式-——简化学习

    限速。负责任简化学习不仅使模型足够轻量级以供使用,而且确保它能够适应数据集中没有出现过角落情况。在深度学习研究中,简化学习可能是最不受关注,因为“我们通过一个可行架构尺寸实现了良好性能” 并不像 “我们通过由数千千万万个参数组成体系结构实现了最先进性能”一样吸引

    作者: 初学者7000
    1133
    1
  • 深度学习框架TensorFlow

        TensorFlow是一个基于数据流编程(dataflow programming)符号数学系统,被广泛应用于各类机器学习(machine learning)算法编程实现,其前身是谷歌神经网络算法库DistBelief   。Tensorflow拥有多层级结构,可部署于各

    作者: QGS
    555
    0
  • 深度学习Attention机制

    Attention,即Attention输出向量分布是一种one-hot独热分布或是soft软分布,直接影响上下文信息选择。加入Attention原因:1、当输入序列非常长时,模型难以学到合理向量表示2、序列输入时,随着序列不断增长,原始根据时间步方式表现越来越差,由于原始时间步模型设计结构有缺

    作者: 玉箫然
    1035
    0
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型神经网络。而这些大公司也花费了很大精力来维护 TensorFlow、PyTorch 这样庞大深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 深度学习入门》笔记 - 22

    神经网络模型建立好了之后,必然要进行模型评估来了解神经网络表现。 神经网络因变量通常有两种数据类型,定量数据和定性数据。不同因变量数据类型对应模型误差定义也不一样。当因变量为定性数据时,模型误差可以进一步分为两个类型: 假阳性率, FPR False Positive Rate

    作者: 黄生
    38
    3
  • 《MXNet深度学习实战》—1.2 深度学习框架

    1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样接口和不同语言API,而且拥有详细文档和活跃社区,因此设计网络更加灵活和高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡和分布式训练方面都有很好支持,因此训练模型时间也大大

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习训练过程

    区别最大部分,可以看作是特征学习过程。具体,先用无标定数据训练第一层,训练时先学习第一层参数,这层可以看作是得到一个使得输出和输入差别最小三层神经网络隐层,由于模型容量限制以及稀疏性约束,使得得到模型能够学习到数据本身结构,从而得到比输入更具有表示能力特征;在学

    作者: QGS
    539
    1
  • 深度学习应用开发》学习笔记-07

    还有一个是vggnet,他问题是参数太大。深度学习问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习开发框架。先整了了Theano,开始于2007年加拿大蒙特利尔大学。随着tens

    作者: 黄生
    827
    2
  • 深度学习TensorBoard错误

    No dashboards are active for the current data set. 特地重新训练了,记下来日志目录,都是创建TensorBoard还是错误,不知道怎么回事,求解

    作者: timo
    4077
    2
  • 深度学习应用开发》学习笔记-03

    有监督学习,无监督学习,半监督学习,强化学习。强化学习非常厉害,适用于下棋和游戏这一类领域,基本逻辑是正确就奖励,错误就惩罚来做一个学习。那么无监督学习典型应用模式是什么呢?说出来之后你就会觉得无监督学习没有那么神秘了,那就是聚类。一个比较典型例子就是超市里货架商品摆放,

    作者: 黄生
    1332
    6
  • 深度学习修炼(一)——从机器学习转向深度学习

    说,各种深度学习框架已经提供了我们所需各种颜料。我们要做,就是利用不同颜料,在空白纸上,一笔一划画出我们所需网络。 深度学习改变了传统互联网业务。第一次听到这个名词时可能大家都会对这方面的知识感到一头雾水,到底什么是深度学习?实际上,深度学习已经应用到生活中点点滴滴

    作者: ArimaMisaki
    发表时间: 2022-08-08 16:45:09
    244
    0
  • 深度学习之构建机器学习算法

    合模型,损失函数和优化算法来构建学习算法配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习。无监督学习时,我们需要定义一个只包含 X 数据集,一个合适无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA第一个主向量模型定义为重建函数 r(x)

    作者: 小强鼓掌
    525
    1
  • 机器学习(八):深度学习简介

    深度学习简介 一、神经网络简介 深度学习(Deep Learning)(也称为深度结构学习【Deep Structured Learning】、层次学习【Hierarchical Learning】或者是深度机器学习【Deep Machine Learning】)是一类算法集合,是机器学习的一个分支。

    作者: Lansonli
    发表时间: 2023-02-18 06:02:17
    62
    0
  • 深度学习之构建机器学习算法

    合模型,损失函数和优化算法来构建学习算法配方同时适用于监督学习和无监督学习。线性回归实例说明了如何适用于监督学习。无监督学习时,我们需要定义一个只包含 X 数据集,一个合适无监督损失函数和一个模型。例如,通过指定如下损失函数可以得到PCA第一个主向量:J(w) = Ex∼pˆdata

    作者: 小强鼓掌
    830
    3
  • 深度学习应用开发》学习笔记-11

    2.5,学习率是0.01,那下一个尝试点是距离前一个点2.5*0.01=0.0025位置。(梯度是固定,还是每走一步都会变呢?)个人认为好学习率,不应该是一个固定值,而应该是先大后小。也就是先大步快速到达底部附近,再小步寻找最底部。学习率是学习开始之前就设置,叫超参

    作者: 黄生
    1128
    1