已找到以下 10000 条记录
  • 深度学习

    使用深度学习方法处理计算机视觉问题过程类似于人类学习过程:我们搭建深度学习模型通过对现有图片不断学**结出各类图片特征,最后输出一个理想模型,该模型能够准确预测新图片所属类别。图1-2展示了两个不同学习过程,上半部分是通过使用深度学习模型解决图片分类问题,下半部分

    作者: 生命无价
    1555
    1
  • 深度学习是什么?

    学习过程中获得信息对诸如文字,图像和声音等数据解释有很大帮助。它最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。 深度学习是一个复杂机器学习算法,在语音和图像识别方面取得效果,远远超过先前相关技术。深度学习在搜索技术,数据挖掘,机器学习

    作者: QGS
    821
    2
  • 深度学习学习

    个相当高代价值。通常,就总训练时间和最终代价值而言,最优初始学习效果会好于大约迭代 100 次左右后最佳效果。因此,通常最好是检测最早几轮迭代,选择一个比在效果上表现最佳学习率更大学习率,但又不能太大导致严重震荡。

    作者: 小强鼓掌
    454
    2
  • 深度学习前景

    为众所周知深度学习’’。这个领域已经更换了很多名称,它反映了不同研究人员和不同观点影响。全面地讲述深度学习历史超出了本书范围。然而,一些基本背景对理解深度学习是有用。一般来说,目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习雏形出现在控

    作者: G-washington
    1665
    1
  • 深度学习深度学习界以外微分

    accumulation)更广泛类型技术特殊情况。其他方法以不同顺序来计算链式法则子表达式。一般来说,确定一种计算顺序使得计算开销最小,是困难问题。找到计算梯度最优操作序列是 NP 完全问题 (Naumann, 2008),在这种意义上,它可能需要将代数表达式简化为它们最廉价形式。

    作者: 小强鼓掌
    438
    0
  • 深度学习简介

    与传统学习方法相比,深度学习方法预设了更多模型参数,因此模型训练难度更大,根据统计学习一般规律知道,模型参数越多,需要参与训练数据量也越大。 20世纪八九十年代由于计算机计算能力有限和相关技术限制,可用于分析数据量太小,深度学习在模式分析中并没有表现出优异识别性能。自从2006年,

    作者: 某地瓜
    1681
    1
  • 深度学习学习 XOR

    1。其余情况下返回值为 0。XOR 函数提供了我们想要学习目标函数 y = f∗(x)。我们模型给出了一个函数 y = f(x; θ)并且我们学习算法会不断调整参数 θ 来使得 f 尽可能接近 f∗。       在这个简单例子中,我们不会关心统计泛化。我们希望网络在这四个点X = {[0, 0]⊤

    作者: 小强鼓掌
    951
    3
  • 【mindSpore】【深度学习】求指路站内深度学习教程

    老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。

    作者: abcd咸鱼
    1443
    1
  • 深度学习发展学习范式——成分学习

    成分学习    成分学习不仅使用一个模型知识,而且使用多个模型知识。人们相信,通过独特信息组合或投入(包括静态和动态),深度学习可以比单一模型在理解和性能上不断深入。    迁移学习是一个非常明显成分学习例子, 基于这样一个想法, 在相似问题上预训练模型权重可以

    作者: 初学者7000
    716
    5
  • 深度学习应用开发》学习笔记-06

    什么是深度深度就是简单量变。神经网络到深度神经网络,就是每一层节点搞多一点,层数也搞多一点。但是如果说网络越深,节点越多,表现能力就越好,这个我看未必,过犹未及嘛深度神经网络本身没再多讲,讲的是卷积神经网络就是CNN。这个是在60年代时候,在研究猫神经元时发现,199

    作者: 黄生
    1127
    3
  • 各个模型深度学习训练加速框架选择 - AI开发平台ModelArts

    各个模型深度学习训练加速框架选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速工具,但是它们实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集训练。D

  • 导入和预处理训练数据集 - CodeArts IDE Online

    导入和预处理训练数据集 参考TensorFlow官网教程,创建一个简单图片分类模型。 查看当前TensorFlow版本,单击或者敲击Shift+Enter运行cell。 1 2 3 4 5 6 7 8 9 10 from __future__ import absolute_import

  • 深度学习笔记之表示学习

    测照片中车。我们知道,汽车有轮子,所以我们可能会想用车轮存在与否作为特征。不幸是,我们难以准确地根据像素值来描述车轮看上去像什么。虽然车轮具有简单几何形状,但它图像可能会因场景而异,如落在车轮上阴影、太阳照亮车轮金属零件、汽车挡泥板或者遮挡车轮一部分前景物体等等。 

    作者: 小强鼓掌
    856
    1
  • 使用Python实现深度学习模型:智能运动表现分析

    但它展示了深度学习在运动表现分析中潜力。实际应用中,我们可以使用更复杂模型和更大数据集,以提高预测准确性和可靠性。 结论 深度学习在智能运动表现分析中具有广泛应用前景。通过使用Python和深度学习库,我们可以构建高效模型,实时监测和分析运动员表现,并提供个性化

    作者: Echo_Wish
    发表时间: 2024-09-13 08:23:20
    380
    0
  • 机器学习深度学习

    Learning,DL)属于机器学习子类。它灵感来源于人类大脑工作方式,是利用深度神经网络来解决特征表达一种学习过程。深度神经网络本身并非是一个全新概念,可理解为包含多个隐含层神经网络结构。为了提高深层神经网络训练效果,人们对神经元连接方法以及激活函数等方面做出了

    作者: QGS
    678
    2
  • 机器学习以及深度学习

    所谓“ 机器学习” , 是指利用算法使计算机能够像人一样从数据中挖掘出信息; 而“ 深度学习”作为“机器学习一个**子集**, 相比其他学习方法, 使用了更多参数、模型也更复杂, 从而使得模型对数据理解更加深人, 也更加智能。 传统机器学习是分步骤来进行, 每一步最优解不一定带来结果的最优解;

    作者: 黄生
    348
    1
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    821
    3
  • 深度学习之机器学习挑战

            机器学习主要挑战是我们算法必须能够在先前未观测新输入上表现良好,而不只是在训练集上效果好。在先前未观测到输入上表现良好能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training

    作者: 小强鼓掌
    516
    2
  • 浅谈深度学习

    为越来越多领域主流技术。然而,深度学习技术也存在一些挑战和问题。例如,深度学习模型训练需要大量数据和计算资源,而且通常需要大量时间和人力来完成。此外,深度学习模型精度和稳定性也需要更多研究和改进。总结总之,深度学习技术是一种非常重要和有影响力机器学习技术。它已经在多

    作者: 运气男孩
    24
    3
  • 什么是深度学习

    何得到输出流程图中最长路径长度记为模型深度。另一方面,在深度概率模型中,也把描述概念之间如何相互关联深度而非计算图深度记为一种模型深度。值得注意是,后者用来计算表示计算图可能比概念图要深得多。鉴于这两种观点共存,一般在一个模型有多深才算作“深度”模型上并没

    作者: 角动量
    1546
    5