检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用自动学习实现文本分类 准备文本分类数据 创建文本分类项目 标注文本分类数据 训练文本分类模型 部署文本分类服务 父主题: 使用自动学习实现零代码AI开发
准备数据 自动学习的每个项目对数据有哪些要求? 创建预测分析自动学习项目时,对训练数据有什么要求? 使用从OBS选择的数据创建表格数据集如何处理Schema信息? 物体检测或图像分类项目支持对哪些格式的图片进行标注和训练? 父主题: Standard自动学习
体的情形,做到不重标、不漏标。 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 图片标注 在新版自动学习页
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示当前环境无法使用。
部署上线 自动学习中部署上线是将模型部署为什么类型的服务? 父主题: Standard自动学习
修改标签:在需要修改的标签的“操作”列,单击“修改”,输入修改后的标签,单击“确定”即可。 删除标签:选择对应的标签,单击操作列的“删除”,在弹出的“删除标签”对话框中单击“确定”即可删除对应的标签。 删除后无法再恢复,请谨慎操作。 继续运行 完成数据的确认之后,返回自动学习的页面,在数据
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
准备数据 数据集版本发布失败 数据集版本不合格 父主题: 自动学习
时后”、“自定义”。如果选择“自定义”的模式,可在右侧输入框中输入1~24范围内的任意整数。 如果您购买了套餐包,计算节点规格可选择您的套餐包,同时在“配置费用”页签还可查看您的套餐包余量以及超出部分的计费方式,请您务必关注,避免造成不必要的资源浪费。 完成资源配置后,单击“继续
模型训练 自动学习训练作业失败 父主题: 自动学习
方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。 MoXing提供了一套文件对象API,可以用来读写OBS文件。
模型发布 模型发布失败 父主题: 自动学习
部署上线 部署上线失败 父主题: 自动学习
是不满足自动学习训练作业要求,因此出现数据集版本不合格的错误提示。 标注信息不满足训练要求 针对不同类型的自动学习项目,训练作业对数据集的要求如下。 图像分类:用于训练的图片,至少有2种以上的分类(即2种以上的标签),每种分类的图片数不少于5张。 物体检测:用于训练的图片,至少有
ModelArts自动学习所创建项目一直在扣费,如何停止计费? 对于使用公共资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在在线服务列表中,停止因运行自动学习作业而创建的服务。
Server和ModelArts Lite Cluster使用的都是专属资源池。 MoXing MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易
llery下载的数据集。单击图标选择您的OBS桶下的任意一处目录,但不能与输出位置为同一目录。 数据集输出位置:用来存放输出的数据标注的相关信息,或版本发布生成的Manifest文件等。单击图标选择OBS桶下的空目录,且此目录不能与输入位置一致,也不能为输入位置的子目录。 图1 下载详情
Standard自动学习所创建项目一直在扣费,如何停止计费? 对于使用公共资源池创建的自动学习作业: 登录ModelArts控制台,在自动学习作业列表中,删除正在扣费的自动学习作业。在训练作业列表中,停止因运行自动学习作业而创建的训练作业。在“在线服务”列表中,停止因运行自动学习作业而创建
AI(人工智能)是通过机器来模拟人类认识能力的一种科技能力。AI最核心的能力就是根据给定的输入做出判断或预测。 AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进
创建项目 创建自动学习项目有个数限制吗? 创建项目的时候,数据集输入位置没有可选数据 父主题: Standard自动学习