内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 分享深度学习笔记组件学习

    组件学习组件学习不仅使用一个模型的知识,还使用多个模型的知识。人们相信,通过独特的信息组合或输入(包括静态动态),深度学习可以比单一模式更深入地理解表现。迁移学习是组件学习的一个非常明显的例子。基于这一思想,对类似问题预先训练的模型权重可用于对特定问题进行微调。为了区分不同类

    作者: 初学者7000
    628
    1
  • 深度学习入门》笔记 - 05

    接下来就是讲线性模型了。线性模型相对比较简单,但是他是学习比较复杂的深度学习模型的一个基础,而且线性模型本身也具有广泛的用途。 这里讲了线性模型中的线性回归模型logistic模型。线性回归模型用于处理`回归问题`。logistic模型用于处理`分类问题`。 线性回归模型可以写作如下的形式:

    作者: 黄生
    145
    3
  • 深度学习之提前终止

    时,算法就会终止。此过程在算法中有更正式的说明。这种策略被称为提前终止(early stopping)。这可能是深度学习中最常用的正则化形式。它的流行主要是因为有效性简单性。

    作者: 小强鼓掌
    325
    0
  • 深度学习入门》笔记 - 18

    反向传播算法(BP Backward Propagation)是神经网络中逐层计算参数梯度的方法。我早就已经开始看不懂了,这个图还没完。这个正向传播算法反向传播算法干啥用的呢?我的理解是用来训练神经网络模型的。因为中间加了很多隐藏层,隐藏层也是需要将损失最小化的呀,所以需要引入这两个算法。神

    作者: 黄生
    23
    1
  • 深度学习模型轻量化

    、MNN等。主要包括编译优化、缓存优化、稀疏存储计算、NEON指令应用、算子优化等3. 硬件层加速。这个维度主要在AI硬件芯片层,目前有GPU、FPGA、ASIC等多种方案,各种TPU、NPU就是ASIC这种方案,通过专门为深度学习进行芯片定制,大大加速模型运行速度。

    作者: 可爱又积极
    1259
    4
  • 深度学习入门》笔记 - 12

    如果太小,算法会收敛的很慢。 如果太大,容易造成算法不收敛,甚至发散。 自变量的标准化,因变量的中心化,是建立深度学习模型常用的数据预处理方法。 他们的好处,是不仅可以让梯度下降法的数值表现的更加稳定,还有助于我们找到合适的初始值步长。 ![image.png](https://bbs-img.huaweicloud

    作者: 黄生
    278
    1
  • 12本深度学习书籍推荐:有入门,有深度

    物,是一本”外行“也能看懂的深度学习书籍。本书首先介绍了什么是深度学习以及为什么我们需要深度学习。然后,介绍了有监督学习、无监督学习强化学习的区别,具体地介绍了分类聚类等主题。随后,介绍了人工神经网络,以及如何逐层组合成网络结构。最后,介绍了深度学习,包括计算机视觉中广泛使用

    作者: 开发者学堂小助
    发表时间: 2018-04-09 09:59:59
    14046
    0
  • 深度学习神经网络

    家庭人口仅仅取决于aiarz特征,换句话说,在神经网络中,你决定在这个结点中想要得到什么,然后用所有的四个输入来计算想要得到的。因此,我们说输入层中间层被紧密的连接起来了。值得注意的是神经网络给予了足够多的关于zy的数据,给予了足够的训练样本有关cy。神经网络非常擅长计算

    作者: 运气男孩
    656
    2
  • Ubuntu深度学习环境配置

    Ubuntu深度学习环境配置安装组合:Anaconda+PyTorch(CPU版)或PyTorch(GPU版)开源贡献:陈信达,华北电力大学3.1 Anacond安装AnacondaPython版本是对应的,所以需要选择安装对应Python2.7版本的还是Python3.7版本

    作者: @Wu
    665
    0
  • 深度学习入门》笔记 - 16

    的预测。也就是说通过增加隐藏层,神经网络可以找到输入层因变量之间更复杂的关系;而不通过隐藏层,这种关系无法表达。同时可以通过增加隐藏层的数量每个隐藏层的节点数,来处理更加复杂的问题。拥有多个隐藏层的神经网络就可以实现深度学习。而数量越多,就需要更多的技巧来训练并发挥这些隐藏层的作用。

    作者: 黄生
    37
    4
  • 浅谈深度学习常用术语

    菜、墨西哥菜印度菜。另一个常见的例子是图片中的对象检测,它使用算法识别出图片中的不同对象。· 标量回归(scalar regression):每个输入数据点都与一个标量质量(scalar quality)相关联,该标量质量是数值型的。这样的例子有预测房价、股票价格板球得分等。·

    作者: QGS
    23
    0
  • 深度学习训练过程

    所有的权重。让认知生成达成一致,也就是保证生成的最顶层表示能够尽可能正确的复原底层的节点。比如顶层的一个节点表示人脸,那么所有人脸的图像应该激活这个节点,并且这个结果向下生成的图像应该能够表现为一个大概的人脸图像。wake-sleep算法分为醒( wake)睡(sleep)两

    作者: QGS
    539
    1
  • 深度学习之动量举例

    为什么要特别使用 −v(t) 粘性阻力呢?部分原因是因为 −v(t) 在数学上的便利——速度的整数幂很容易处理。然而,其他物理系统具有基于速度的其他整数幂的其他类型的阻力。例如,颗粒通过空气时会受到正比于速度平方的湍流阻力,而颗粒沿着地面移动时会受到恒定大小的摩擦力。这些选择都

    作者: 小强鼓掌
    420
    2
  • 深度学习入门》笔记 - 13

    一般模型不会直接预测某信用卡用户是否违约,而是预测其违约的概率,表示为`P(Default|Balance,Income)`,因为它的值在01之间,所以如果直接用类似线性回归模型的方式是不行的,需要对加权进行变换。即: ![image.png](https://bbs-img.huaweicloud.com/

    作者: 黄生
    48
    1
  • 深度学习之小更新

    梯度下降基本上所有的可以有效训练神经网络的学习算法,都是基于局部较也许能计算目标函数的一些性质,如近似的有偏梯度或正确方向估计的方差。在这些情况下,难以确定局部下降能否定义通向有效解的足够短的路径,但我们并不能真的遵循局部下降的路径。目标函数可能有诸如病态条件或不连续梯度的问题

    作者: 小强鼓掌
    419
    2
  • 深度学习之Dropout启发

    Dropout启发其他以随机方法训练指数量级的共享权重的集成。DropConnect是Dropout的一个特殊情况,其中一个标量权重单个隐藏单元状态之间的每个乘积被认为是可以丢弃的一个单元 (Wan et al., 2013)。随机池化是构造卷积神经网络集成的一种随机池化的形式

    作者: 小强鼓掌
    831
    3
  • 深度学习之交叉验证

    数据集分成固定的训练集固定的测试集后,若测试集的误差很小,这将是有问题的。一个小规模的测试集意味着平均测试误差估计的统计不确定性,使得很难判断算法 A 是否比算法 B 在给定的任务上做得更好。当数据集有十万计或者更多的样本时,这不会是一个严重的问题。当数据集太小时,也有替代方法

    作者: 小强鼓掌
    935
    3
  • 深度学习Sigmoid 激活函数

    Sigmoid 函数的图像看起来像一个 S 形曲线。

    作者: 我的老天鹅
    422
    4
  • 深度学习入门》笔记 - 02

    26687508822.png) 矩阵的基本运算就是加减乘除。加减法如果这两个矩阵的维度是一样的,就非常好理解。矩阵也可以行向量进行加减,要求行向量的列数矩阵的列数是一样的。 矩阵的乘法,如果两个矩阵的维度一样,也非常好理解,这种叫做`逐点相乘`(element-wise product)。

    作者: 黄生
    54
    0
  • 深度学习GoogLeNet结构

    作者: 我的老天鹅
    426
    7