内容选择
全部
内容选择
内容分类
  • 学堂
  • 博客
  • 论坛
  • 开发服务
  • 开发工具
  • 直播
  • 视频
  • 用户
时间
  • 一周
  • 一个月
  • 三个月
  • 深度学习之快速 Dropout

    有与传统Dropout方法完全相同的噪声掩码,但缺乏正则化效果。Dropout Boosting训练整个集成以最大化训练集上的似然。从传统Dropout类似于Bagging的角度来看,这种方式类似于Boosting。如预期一样,单一模型训练整个网络相比,Dropout Boos

    作者: 小强鼓掌
    541
    1
  • 深度学习

    会给其输入指定一个权重:相对于执行的任务该神经元的正确错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小是否运动。神经网络的任务是判断这是否是一个停止标志。它将

    作者: feichaiyu
    发表时间: 2019-12-16 00:07:41
    3780
    0
  • 《MXNet深度学习实战》—1.2 深度学习框架

    1.2 深度学习框架目前大部分深度学习框架都已开源,不仅提供了多种多样的接口不同语言的API,而且拥有详细的文档活跃的社区,因此设计网络更加灵活高效。另外,几乎所有的深度学习框架都支持利用GPU训练模型,甚至在单机多卡分布式训练方面都有很好的支持,因此训练模型的时间也大大

    作者: 华章计算机
    发表时间: 2019-06-16 16:24:22
    3395
    0
  • 深度学习之学习算法

    提供了一个简洁的定义:“对于某类任务 T 性能度量P,一个计算机程序被认为可以从经验 E 中学习是指,通过经验 E 改进后,它在任务 T 上由性能度量 P 衡量的性能有所提升。” 经验 E,任务 T 性能度量 P 的定义范围非常宽广,我们中提供直观的解释示例来介绍不同的任务、性能度量经验,这些将被用来构建机器学习算法。

    作者: 小强鼓掌
    944
    0
  • [深度学习]测距

    系列内容深度学习CNN 文章目录 ADAS摄像头成像需具备的两大特点单目镜头的测距原理双目镜头的测距原理 ADAS摄像头成像需具备的两大特点 是要看得足够远 看的越远就能有更加充裕的时间做出判断反应,从而 避免或者降低事故发生造成的损失。 是要求高动态

    作者: 内核笔记
    发表时间: 2021-06-08 15:51:49
    1409
    0
  • 深度学习】嘿马深度学习笔记第1篇:深度学习基本概要【附代码文档】

    掌握神经网络图像相关案例 深度学习介绍 1.1 深度学习与机器学习的区别 学习目标 目标 知道深度学习与机器学习的区别 应用 无 1.1.1 区别 1.1.1.1 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识 深度学习通常由多个层组

    作者: 程序员一诺python
    发表时间: 2024-08-16 17:03:45
    22
    0
  • 矩阵向量相乘“深度学习”笔记

    矩阵向量相乘矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵AB的矩阵相乘是第三个矩阵C。为了使乘法可被定义,矩阵A的列数必须矩阵B的行数相等。如果矩阵A的形状是m x n,矩阵B的形状是n x p,那么矩阵C的形状是m x p。我们可以通过将两个或多个矩阵并列放置以书写矩阵乘法,列如

    作者: QGS
    731
    2
  • 适合新手的深度学习综述(5)--深度神经网络

    在本节中,我们将简要地讨论深度神经网络 (DNN),以及它们最近的改进突破。神经网络的功能与人脑相似。它们主要由神经元连接组成。当我们说深度神经网络时,我们可以假设有相当多的隐藏层,可以用来从输入中提取特征计算复杂的函数。Bengio(2009) 解释了深度结构的神经网络,如卷积神经网络

    作者: @Wu
    179
    1
  • 深度学习概述

    构建过程中评估模型,进而调整模型超参数。测试集:用来评估训练好的最终模型的性能。 2.2数据集分割 训练集测试集是同分布的。留出法直接将数据集拆分为互斥的训练集、验证集测试集。划分比例推荐70%,15%,15%注意事项:1.单次使用留出法会导致模型不稳定。2.保证三种数据集中样本比例的相似性。3

    作者: 大鹏爱学习
    发表时间: 2022-10-17 10:07:38
    961
    0
  • 深度学习模型结构

    目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: 运气男孩
    1146
    2
  • 深度学习初体验

    显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana

    作者: ad123445
    8089
    33
  • 部署深度学习模型

    虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的

    作者: 初学者7000
    876
    3
  • 深度学习模型结构

    者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer

    作者: QGS
    646
    2
  • ArrayList 深度学习

    ArrayList LinkedList 都是不同步的,也就是不保证线程安全; 底层数据结构: Arraylist 底层使用的是 Object 数组;LinkedList 底层使用的是 双向链表 数据结构(JDK1.6 之前为循环链表,JDK1.7 取消了循环。注意双向链表双向循环链表的区别,下面有介绍到!)

    作者: 木字楠
    发表时间: 2022-12-24 09:10:26
    170
    0
  • 深度学习基本概念

    uer)。深度神经网络(deep neural networks,DNN) 深度学习目前几乎唯一行之有效的实现形式。简单的说,深度神经网络就是很深的神经网络。我们利用网络中逐层对特征进行加工的特性,逐渐从低级特征提取高级特征。除了深度神经网络之外,有学者在探索其他深度学习的实现形

    作者: 运气男孩
    973
    4
  • 分享深度学习算法

    、训练策略泛化能力上的效果。对于一些关键的方法,作者还使用了公开数据集私有数据进行总结比较,采用私有数据的目的是测试各类方法在全新场景下的泛化性能。这篇论文能够为研究深度立体匹配的研究人员提供详细的参考资料,同时,作者在最后一节提到的7种未来发展方向对于研究深度立体匹配具有

    作者: 初学者7000
    953
    3
  • 深度学习深陷困境!

    来自海量数据深度学习的融合。常见的计算机软件通过定义一组专用于特定工作的符号处理规则来解决难题,例如在文字处理器中编辑文本或在电子表格中执行计算,而神经网络却通过统计近似值从样本中学习来解决难题。由于神经网络在语音识别、照片标记等方面取得了不错的成就,许多深度学习的支持者已

    作者: 星恒
    250
    3
  • 深度学习笔记之理解

    我们今天知道的一些最早的学习算法,是旨在模拟生物学习的计算模型,即大脑怎样学习或为什么能学习的模型。其结果是深度学习以人工神经网络 (artificial neural network, ANN) 之名而淡去。彼时,深度学习模型被认为是受生物大脑(无论人类大脑或其他动物的大脑)所启发而设计出来的系统。尽管

    作者: 小强鼓掌
    826
    2
  • 深度学习在环保

    年,短短的六年时间里,深度学习所需的计算量增长了 300,000%。然而,与开发算法相关的能耗碳排放量却鲜有被测量,尽管已有许多研究清楚地证明了这个日益严峻的问题。 针对这一问题,哥本哈根大学计算机科学系的两名学生,协同助理教授 一起开发了一个的软件程序,它可以计算预测训练深度学习模型的能源消耗和二氧化碳排放量。 网址:

    作者: 初学者7000
    839
    2
  • 深度学习的特点

    深度学习区别于传统的浅层学习,深度学习的不同在于: (1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,

    作者: QGS
    667
    2