检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标注团队成员ID。 workforce_id 是 String 标注团队ID。 请求参数 表2 请求Body参数 参数 是否必选 参数类型 描述 description 否 String 标注成员描述,长度为0-256位,不能包含^!<>=&"'特殊字符。 role 否 Integer 角色。可选值如下:
在创建并使用的工作空间,以实际取值为准。 search_type 否 String 过滤方式。可选值如下: equal表示精确匹配。 contain表示模糊匹配。 具体过滤的字段,由各个接口额外定义参数。例如Workflow支持按照名称(name)进行过滤,则相应的过滤字段为na
查看Notebook实例事件 在Notebook的整个生命周期,包括实例的创建、启动、停止、规格变更等关键操作以及实例的运行状态等在后台都有记录,用户可以在Notebook实例详情页中查看具体的事件,通过实例的事件,从而看到实例的运行或者异常等状态详情。在右侧可以手动刷新事件,也
数据处理任务的工作目录。 workspace_id 否 String 工作空间ID。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表3 ProcessorDataSource 参数 是否必选 参数类型 描述 name 否 String 数据集的名称。 source
],列表中元素“service_instance”对象即为服务管理章节描述的可调用服务接口。 支持按照检索参数查询服务列表,返回满足检索条件的服务list,检索参数如表1所示。 在查询列表时,返回list的同时,默认会打印模型列表的详细信息,如表2和表3所示。 表1 查询检索参数说明 参数 是否必选
资源池:在“专属资源池”页签选择GPU规格的专属资源池。 规格:选择所需GPU规格。 计算节点个数:选择需要的节点个数。 SFS Turbo:增加挂载配置,选择SFS名称,云上挂载路径为“/home/ma-user/work”。 为了和Notebook调试时代码路径一致,保持相同的启动命令,云上挂载路
ices_out_cuda_frame failed with error code 0” 训练作业失败,返回错误码139 训练作业失败,如何使用开发环境调试训练代码? 日志提示“ '(slice(0, 13184, None), slice(None, None, None))'
xxx”的报错,可以判断是环境中没有包含用户依赖的python包。 处理方法 训练作业导入模块时日志出现前两条报错信息,处理方法如下: 首先保证被导入的module中有“__init__.py”存在,创建“module_dir”的“__init__.py”,如原因分析中的结构所示。
部署服务时,需满足以下参数配置: 自定义部署超时时间 大模型加载启动的时间一般大于普通的模型创建的服务,请配置合理的“部署超时时间”,避免尚未启动完成被认为超时而导致部署失败。 添加环境变量 部署服务时,增加如下环境变量,会将负载均衡的请求亲和策略配置为集群亲和,避免未就绪的服务实例影响预测成功率。 MODEL
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据
在在线推理服务列表页面,选择服务“状态”为“运行中”的服务。 单击操作列的“推理测试”,在测试页面根据任务类型以及页面提示完成对应的测试。 调用API 待推理服务的状态变为“运行中”时,可单击操作列的“调用”,复制对应的接口代码,在本地环境或云端的开发环境中进行接口。 图1 调用接口 当部署推理服务的“安全认证”选择
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据
odelArts的训练环境、贴近本地开发习惯地编写启动命令,ModelArts提供了一个训练作业场景下的IDE插件ModelArts-HuaweiCloud,用户通过简易的操作,实现在本地IDE中进行训练配置、资源监控、作业管理、代码管理等动作。 本章节介绍如何使用VS Code插件创建训练作业并调试。
项目ID通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为GET https://{iam-endpoint}/v3/projects,其中{iam-endpoint}为IAM的终端节点,可以从地区和终端节点处获取。 响应示例如下,例如ModelArts部署的区域为"cn-no
允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
在ModelArts中创建训练作业,并完成模型训练,在得到满意的模型后,可以将训练后得到的模型导入至模型管理,方便统一管理,同时支持将模型快速部署上线为服务。 约束与限制 针对使用订阅算法的训练作业,无需推理代码和配置文件,其生成的模型可直接导入ModelArts。 使用容器化部署,导入的元模型有大小限制,详情请参见导入模型对于镜像大小限制。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以