检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署服务后,调用API失败怎么办? 在ModelArts Pro使用预置工作流部署服务后,可通过调用API和SDK调用已部署的在线服务。如果调用API失败,可根据返回的错误码及错误信息解决问题,具体的错误码说明请见表1。 表1 API调用指导 行业套件 调用API方法 错误码 文字识别套件
在图片模板中框选识别区,确定模板图片中需要识别的文字位置。 框选识别区 训练分类器 多模板分类工作流可以通过追加训练分类器,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 训练分类器 评估应用 通过上传测试图片,在线评估模板分类情况和模板的文字识别情况,保证能在多
和校验结果不断扩充数据和调优。 因此ModelArts Pro提供版本更新的功能,首次版本为v1,然后v2、v3......以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 每修改一次,更新成一个版本,不同的作业版本之间,能快速进行对比,获得对比结果。 前提条件
情”,包括“交并比变化情况”和“损失变化”。 图1 模型训练 模型如何提升效果 检查图片标注是否准确,第二相区域标注工作量较大,建议基于自动标注的结果进一步优化标注精度。 可根据损失函数选择适当的训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训
评估应用 确定模板图片的参照字段和识别区后,需要对模板图片进行评估和考察。您可以通过上传测试图片,在线评估模板的识别情况,保证能正确识别同样模板下其他图片中的识别区文字。 前提条件 已在文字识别套件控制台选择“通用单模板工作流”新建应用,并完成框选识别区步骤,详情请见框选识别区。
和校验结果不断扩充数据和调优。 因此ModelArts Pro提供版本更新的功能,首次版本为v1,然后v2、v3......以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 每修改一次,更新成一个版本,不同的作业版本之间,能快速进行对比,获得对比结果。 前提条件
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
端侧精度。 对接华为HiLens技能开发平台,一键式创建技能,快速部署技能至端侧设备。 前提条件 使用ModelArts Pro服务请根据如何使用ModelArts Pro罗列的要求,提前完成准备工作。 使用预置工作流开发应用流程 HiLens套件当前提供了HiLens安全帽检测
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“损失变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 训练详情 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建
Pro的文字识别套件提供了通用单模板工作流,通过工作流指引可构建文字识别模板,识别单个板式图片中的文字,快速实现文档、票证等场景的文字识别。 本章节提供一个身份证样例,帮助您快速熟悉使用文字识别套件中的通用单模板工作流开发应用的过程。通过上传模板图片、框选参照字段和识别区,自动训练
这就需要在图片模板中框选识别区。 识别区指图片中待识别的文字位置。所有需要识别的图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在文字识别套件控制台选择“多模板分类工作流”新建应用,并框选参照字段,详情请见框选参照字段。 操作步骤
BMP。 图片最大边不大于4096px,最小边不小于100px,且大小不超过4M。 训练分类器的数据集要求将图片放在一个目录里,并压缩成zip文件,文件大小不应大于10M。 进入应用开发页面 登录“ModelArts Pro>文字识别套件”控制台。 默认进入“应用开发>工作台”页面。
由于通用文本分类工作流和多语种文本分类工作流开发应用的流程相同,因此本章节以通用文本分类工作流为例,介绍如何使用自然语言处理套件中的文本分类工作流开发应用,通过上传训练数据、训练模型,将生成的模型部署为在线服务。部署完成后,用户可通过在线服务分类文本内容。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作