检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
高质量数据是推动大模型不断迭代和优化的根基,它的质量直接决定了模型的性能、泛化能力以及应用场景的适配性。只有通过系统化地准备和处理数据,才能提取出有价值的信息,从而更好地支持模型训练。因此,数据的采集、清洗、标注、评估、发布等环节,成为数据开发中不可或缺的重要步骤。 数据工程操作流程见图1、表1。
矿山行业:进行智能洗选,例如根据煤炭的特征,将煤炭分类,提高洗选效率,降低能耗。 油气行业:进行地质分层,例如基于地质数据,对不同地层进行分类,识别储层和非储层,提高勘探和开发效率。进行岩性识别,例如对不同岩石类型进行分类,帮助识别岩石的性质和特征,指导钻井和开采。进行流体识别,例如根据测井数据,识别储层中的油、气、水等流体类型。
趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 以下给出了几种正常的Loss曲线形式: 图1 正常的Loss曲线:平滑下降 图2 正常的Loss曲线:阶梯下降 如果您发现Loss曲线出现了以下几种情况,可能意味着模型训练状态不正常:
意图识别节点通过大模型推理分析用户输入,匹配预定义的意图关键字类别,并根据识别结果引导至相应的处理流程,通常位于工作流的前置位置。 意图识别节点为可选节点,若无需配置,可跳过该步骤。 意图识别节点配置步骤如下: 拖动左侧“意图识别”节点至画布中,单击该节点以打开节点配置页面。 参照表3,完成意图识别节点的配置。 表3
如何让大模型按指定风格或格式回复 要让模型按照特定风格回复,可以提供领域和角色信息(如目标受众或特定场景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。
服务,便捷地构建自己的模型和应用。 数据工程工具链:数据是大模型训练的核心基础。数据工程工具链作为平台的重要组成部分,具备数据获取、数据加工和数据发布等功能,确保数据的高质量与一致性。工具链能够高效收集并处理各种格式的数据,满足不同训练任务的需求,并提供强大的数据存储和管理能力,为大模型训练提供坚实的数据支持。
确定”。 图4 连接节点操作 配置“意图识别”节点。 鼠标拖动左侧“意图识别”节点至编排页面,连接“开始”节点和“意图识别”节点,单击“意图识别”节点进行配置。 图5 连接节点操作 在“参数配置”中,配置输入参数。 参数名称:默认参数名称为input。 类型、值:选择“引用 >
批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式:
数据配比是将多个数据集按特定比例组合并发布为“发布数据集”的过程。通过合理的配比,确保数据集的多样性、平衡性和代表性,避免因数据分布不均而引发的问题。 配比文本类数据集 流通文本类数据集 数据流通是将单个数据集发布为特定格式的“发布数据集”,用于后续模型训练等操作。 平台支持发布的数据集格式为默认格式、盘古格式。
检查模板占位符与输入是否匹配。 101097 意图识别调用大模型的prompt不符合模型输入的规范。 检查输入的prompt格式,消息的角色和内容。 101096 意图识别调用大模型失败。 检查消息的格式,内容以及大模型服务是否正常。 101095 意图识别用户query输入/引用解析失败。 检查用户query格式和内容。
您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,温度和核采样的作用相近,在实际使用中,为了更好观察是哪个参数对结果造成的影响,因此不建议同时调整这两个参数。 如果您没有专业的调优经验,可以优先使用建议,再结合推理的效果动态调整。
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
选择合适的CV大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。 表1 CV大模型的类型 模型名称 适用场景 说明 Pangu-CV-ObjectDetection-N-2.1.0 该模型属于物体检测模型,旨在识别图像中的所有感兴趣目标,定
cnop噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。 ensemble_noise_perlin_scale
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设
此示例演示了如何使用盘古预置NLP大模型进行对话问答,包含两种方式:使用“能力调测”功能和调用API接口。 您将学习如何使用“能力调测”功能调试模型超参数、如何调用盘古NLP大模型API以实现智能化对话问答能力。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型
功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作业API后,在这个
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。