检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
些场景需要特定次数的激活预警:例如当一个场景中主车驾驶过程中会碰到n个盲区,此时必须正好激活n次才能证明主车算法通过;因此支持让用户设置各项子指标是否需要预警和期望的预警次数; 默认期望的预警次数为-1,此时只要该预警功能激活至少一次,则评测项通过;当设置期望的预警次数为正数或0
请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token,通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值) 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 payload
自动驾驶车辆在行驶过程中,当车道的曲率发生较大变化时,可能会出现横向控制效果不佳导致的长时间车辆横向振荡。 蛇行检测的目的是判断车辆是否出现横向振荡,利用车辆的横向加速度的正负变化来判断蛇行是否发生。 正值大于和负值小于的比例都大于该时间段的10%时,则判断此时间段发生蛇行。 在及少数的连续S型弯道
减速度(Deceleration)检测 减速度检测的目的是: 判断主车在整个行驶过程中制动减速度是否超过对应的舒适性阈值。 本设计的减速度的默认阈值为3。 父主题: 内置评测指标说明
Headway)检测 车头时距检测的目的是判断主车行驶过程中与其他交通车的车头时距是否台小。 车头时距是主车与引导车的相对距离除以主车的速度。 即使主车未发生碰撞, 当车头时距过小时(该阈值可用户自定义,本设计默认取2s), 发生碰撞的风险太大, 这样也是不合理的。 车头时距和碰撞时间两者都是描述碰撞风险大小的。
数据集镜像Dockerfile示例 本章节介绍Dockerfile示例。 用户可使用命令行模式或Dockerfile模式进行构建。 以数据集自定义镜像为例,一般的镜像制作Dockerfile示例如下: 数据集镜像不支持调用GPU资源。 # 载入基础镜像,用户可手动制作或拉取官方镜像 FROM registry-cbu
Condition (1+) └─ Action 场景组成说明 场景文件的主体是一个场景剧本storyboard,用户需要在storyboard前先声明将会使用的路网RoadNetwork、参数Parameter,和实体Entities。然后在Storybo
附录 Enum Lists 父主题: 静态场景(地图)
Control)的最大减速度,和AEB(Autonomous Emergency Braking)的最大减速度。 急刹检测的目的是判断主车在行驶过程中是否达到ACC和AEB的最大减速度。 ACC的最大减速度通常为。 AEB的最大减速度通常为。 该两项子指标关联的内置可视化时间序列数据均为:accX。
乘员舒适性检测关注的是自动驾驶车辆行驶过程中,驾驶员感受到的舒适程度。 舒适程度通常可以利用整个行驶过程中的速度方差来进行客观反映,而变异系数是可以对不同速度区间舒适程度进行比较。 变异系数的公式如下所示。 表示变异系数,表示标准差,表示均值。 本设计当主车速度的变异系数大于0.15时,判定乘员舒适性检测不通过。
AB类均匀权重评测分数计算实现(Equation) 本设计的评测分数旨在反映自动驾驶的安全性,因此计算过程中的评测分值分布为: A类:60分 B类:40分 具体实现公式为: 其中: : A类指标参与评测的总数目。 : A类指标未通过的数目。 : B类指标参与评测的总数目。 : B类指标未通过的数目。 父主题: 评测分数计算介绍
通行速率用于评价主车在场景中从起点到终点的效率,主车越快到达终点,则通行速率越高。 本设计取通行速率的默认阈值为0m/s,即如果主车平均速度小于等于0,则该指标不通过。 通行速率指标可有效避免主车一直不动,其他评测指标均通过,导致得分却很高的情况发生。 该指标关联的内置可视化时间序列数据为:speedX。
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 FROM ros:noetic COPY ros_to_dataset.py /home/main/ # 算法启动示例:
C类均匀权重评分(Average)方案 当用户选择该评分方案时,就不需要设置评测指标的重要度,各个指标按均匀权重进行扣分。 C类均匀权重评分原则(Principle) 各指标得分权重相同。 C类均匀权重评测分数计算实现(Equation) 此方案下总分为100分,在计算得分时不考
到达终点(Reach Destination)检测 到达终点检测的目的是判定主车是否到达场景文件中指定的全局路径规划的终点。 当主车的车辆坐标系原点进入终点为半径R(本设计取R为2m)范围内时, 则判定主车到达了终点。 在没有设置终点时, proto协议会把目标点默认初始化(0,0
Driving)检测 逆行检测的目的是判断主车行驶过程中是否按车道规定的方向行驶。 根据OPNENDRIVE中对车道的lane id的定义, 沿着道路的reference line的前进方向, reference line右侧的lane id由0逐渐递减,左侧的lane id由0逐渐递增。
示例代码 作业输入输出规范示例代码如下图所示: 代码文件命名为ros_hard_mining.py。 父主题: 场景挖掘作业(数据标记)
POST预签链接信息,用于上传文件。 fields PostResponseField object POST预签链接信息,调用POST预签链接上传文件时用于构造请求。 表5 PostResponseField 参数 参数类型 描述 key String Post预签链接Key字段,在创建请求时需要添加到请求头。
Go)检测 跟车起停检测的目的是判断主车跟随前车停车后能否在前车启动后重新启动。 当主车跟随前车制动停止后, 前车重新启动后, 主车重新启动的时间要合适, 该时间允许用户自定义, 本设计默认取3s。 当重新启动时间大于指定阈值时, 则跟车起停检测不通过。 该指标关联的内置可视化时间序列数据为:暂无。
构建镜像 Octopus平台依赖算子镜像内的/bin/bash、stdbuf、tee软件,请确保基础镜像内包含上述软件且能通过PATH找到。 Dockerfile示例 启动命令: python3 /home/main/ros2opendata.py --lidar_calibration_id