检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
同时该网络的解除关联SFS Turbo按钮置灰不可操作。 图3 关联SFS Turbo状态 原因分析 ModelArts缺少SFS Turbo委托权限导致关联或解除关联失败。 处理方法 需要您给ModelArts配置SFS Turbo委托权限,配置步骤请参考最佳实践的“委托授权ModelArts云服务使用SFS
“目标区域”:选择您需要将该数据集下载到的区域位置,如“华北-北京四”。 “数据类型”:选择需要处理的文件类型。数据类型更多信息请参考数据集的类型。 “数据集输出位置”:数据集输出位置的OBS路径,此位置会存放输出的标注信息等文件,此位置不能和OBS数据源中的文件路径相同或为其子目录。 “数据集输入位置”:AI
发布和管理AI Gallery数据集 发布和管理AI Gallery项目 发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型 使用AI Gallery在线推理服务部署模型 Gallery CLI配置工具指南 计算规格说明
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ
状态码:200 表4 响应Body参数 参数 参数类型 描述 count Integer 不分页的情况下符合查询条件的总数量。 total_count Integer 当前查询结果的数量,不设置offset、limit查询参数时,count与total相同。 engine_runtimes
方法1:如果您希望使用公共资源池下的Ascend Snt3,可以等待其他用户释放,即其他使用Ascend Snt3芯片的服务停止,您即可选择此资源进行部署上线。 方法2:如果专属资源池还有Ascend Snt3资源,您可以创建一个Ascend Snt3专属资源池使用。 方法3:如果专属资源池的Ascend
执行代码、模型需先上传至OBS(训练作业生成的模型已默认存储到OBS)。 接口约束 使用模板导入模型与不使用模板导入这两类导入方式的Body参数要求不一样。以下Body参数说明中以模板参数表示适合使用模板导入模型时填写的参数,非模板参数表示适合不使用模板导入时填写的参数,公共参数表示与导入方式无关的参数。 使用
8*ascend-snt9b表示昇腾8卡。 推荐使用“西南-贵阳一”Region上的昇腾资源。 创建OBS桶 ModelArts使用对象存储服务(Object Storage Service,简称OBS)进行数据存储以及模型的备份和快照,实现安全、高可靠和低成本的存储需求。因此,在使用ModelArts之前通常先
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard。资源规格需要使用专属资源池中的昇腾Snt9B资源,请参考创建资源池购买资源。 推荐使用“西南-贵阳一”Region上的昇腾资源。 专属资源池驱动检查 登录ModelArts控制台,单击“专属资源池
列单击“启动IPv6”,如图3 打通VPC前,需要保证ModelArts网络和您的VPC网络都已开启IPv6,IPv6才会生效。若是打通VPC后,才开启ModelArts网络的IPv6或VPC网络的IPv6,此时需要重新打通VPC及子网,IPv6才会生效。 图2 创建网络 图3 启动IPv6
提供多种数据接入方式,支持用户从OBS,MRS,DLI以及DWS等服务导入用户的数据。 提供18+数据增强算子,帮助用户扩增数据,增加训练用的数据量。 帮助用户提高数据的质量。 提供图像、文本、音频、视频等多种格式数据的预览,帮助用户识别数据质量。 提供对数据进行多维筛选的能力,用户可以根据样本属性、标注信息等进行样本筛选。
LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,还降低了显存和计算成本,加快了模型微调速度。对于VLL
strings 导出的样本ID列表。 search_conditions Array of SearchCondition objects 导出的筛选条件,多个条件之间是或(OR)关系。 train_sample_ratio String 指定发布版本时训练集-验证集的切分比例,默认为1
当您需要在AI Gallery下架共享的资产时,可以执行如下操作: 在“AI Gallery”页面,选择“我的Gallery > 我的资产 > Notebook”,进入“我的Notebook”。 在“我的Notebook > 我的发布”页面,单击目标资产右侧的“下架”,在弹框中确认资产信息,单击“确定”完成下架。
模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训练得到的,而在特定任务上,这些模型的参数可能并不都是最合适的,因此需要进行微调。 AI Gallery的模型微调,简单易