检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改动
数据准备:准备包含干净图像和添加噪声后的训练数据集。 模型构建:定义DnCNN模型的网络结构。 损失函数定义:选择合适的损失函数,通常使用均方误差(MSE)损失。 优化器选择:选择优化算法进行模型参数的优化,如Adam优化器。 模型训练:对DnCNN模型进行训练,并调整参数以最小化损失函数。 模型评估:使用测试集评估训练后的模型性能。
far10数据集上的分类任务,给出了分布式训练改造(DDP)的完整代码示例,供用户学习参考。 基于开发环境使用SDK调测训练作业:介绍如何在ModelArts的开发环境中,使用SDK调测单机和多机分布式训练作业。 父主题: 分布式模型训练
是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoint,中间不需要改
Shell中单击回车键即可恢复正常。 图3 路径异常 如何使训练作业保持运行中状态 由于需要训练作业处于“运行中”状态才能登录Cloud Shell,因此本文介绍如何使训练作业保持运行中状态,方便您快速通过Cloud Shell登录运行中的训练容器。 通过Sleep命令使训练作业保持运行 如果训练作业使用的是预置框架:
创建Tensorboard方式: 创建训练任务的时候同步创建Tensorboard 在模型训练工程代码编辑界面控制台的Tensorboard页签中创建Tensorboard 新建模型训练工程,创建训练任务后,在任务详情的Tensorboard页签中创建Tensorboard 配置训练任务时,AI引擎选择Py
支持用户通过本地上传或者AI市场导入的方式,导入模型包。 2 模型包名称 模型包的名称。 版本 模型包生成时的版本。 模型类型 模型的AI算法框架类型。 运行环境 AI算法框架匹配的Python语言版本。 创建时间 模型包生成的时间。 来源 模型包的来源。包括模型训练服务、本地上传和AI市场导入三种来源。
训练作业卡死检测 什么是训练作业卡死检测 训练作业在运行中可能会因为某些未知原因导致作业卡死,如果不能及时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展
功能模型无需额外训练即可直接用于客户任务,而基模型则需要经过微调训练才能应用。NLP大模型不仅支持预训练和微调,还可以通过如下训练途径来构建满足客户需求的“用户模型”。 图1 NLP大模型训练方式与流程 除基模型、功能模型这两种模型划分途径外,NLP大模型还提供了多种系列的模型,不同系列模型在能力上有所差异,可执行的训练操作也有所不同。
模型训练服务首页 如何回到模型训练服务首页? 创建项目公开至组的参数是什么含义? 父主题: 常见问题
job-dir/code/train.py 使用Ascend自定义镜像训练时的训练代码适配规范 使用NPU资源创建训练作业时,系统会在训练容器里自动生成Ascend HCCL RANK_TABLE_FILE文件。当使用预置框架创建训练作业时,在训练过程中预置框架会自动解析Ascend
906) LLaVA模型基于DevServer适配PyTorch NPU预训练指导(6.3.906) LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906) Qwen-VL基于DevServer适配Pytorch NPU的Finetune训练指导(6.3
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
是否生成本地模型包:请保持默认值关闭。即默认不在当前JupyterLab特征工程项目中生成本地模型包。仅归档模型包,供模型管理页面新建模型包使用。 是否生成本地metadata.json:请保持默认值关闭。 单击归档cell代码框左侧的图标,完成模型归档。 父主题: 模型训练
LaVA 修改训练脚本模型路径(--model_name_or_path 模型路径)。 vim ./scripts/v1_5/pretrain_new.sh 运行训练脚本,默认是单机8卡。 bash ./scripts/v1_5/pretrain_new.sh 训练完成后,权重文
作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成后,请参考查看日志和性能章节查看SFT微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.905)
size)流水线模型并行策略,具体详细参数配置如表2所示。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入:
HuggingFace转Megatron参数说明 --model-type:模型类型。 --loader:选择对应加载模型脚本的名称。 --saver:选择模型保存脚本的名称。 --tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipelin
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 ChatGLMv3-6B 在训练开始前,针对ChatGLMv3-6B模型中的