检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
LoRA、QLoRA,本文档主要支持全参数(Full)和LoRA。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 全参训练(Full):这种策略主要对整个模型进行微调。这
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 预训练/微调 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
LoRA,本文档主要支持全参数(Full)和LoRA、LoRA+。 LoRA(Low-Rank Adaptation): 这种策略主要针对如何在保持模型大部分参数固定的同时,通过引入少量可训练参数来调整模型以适应特定任务。 LoRA+(Efficient Low Rank Adaptation
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
下载完成后,需要修改权重文件中config.json文件,把model_type字段值改为“deepseekv2”。 方式二:将FP8权重转换为BF16权重 介绍如何将DeepSeek官方发布的FP8权重转换为BF16的权重。用于生产环境的业务推荐使用此方式。具体操作步骤如下。 下载FP8的权重,下载地
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数及其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
"num_turns": 3, "chat": { "turn_1": { "Human": "<|Human|>: 如何保障工作中遵循正确的安全准则?<eoh>\n", "Inner Thoughts": "<|Inner Thoughts|>:
sh install.sh modellink; sh ./scripts_modellink/dev_pipeline.sh 使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendFactory;
sh; ascendfactory-cli train <cfgs_yaml_file> <model_name> <exp_name> 使用ECS中构建新镜像构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendFactory;
erro*”或“query logs OR erro*”。 标签 展示服务已添加的标签。支持添加、修改、删除标签。 标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 Cloud Shell 允许用户使用ModelArts控制台提供的CloudShell登录运行中在线服务实例容
Lite的接口即可。 MindSpore Lite提供了Python、C++以及JAVA三种应用开发接口。此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。
TF-1.13.1-python3.6 TF-2.1.0-python3.6 PyTorch-1.4.0-python3.6 下文将介绍如何在训练中使用评估代码。对训练代码做一定的适配和修正,分为三个方面:添加输出目录、复制数据集到本地、映射数据集路径到OBS。 添加输出目录