检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集版本信息。 'classes': [category1',category2', ...],// 所有类别名称的列表,每个类别对应一个 label,用于标注视频中的事件或动作。 'database': { 'video_name':{
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并比是指模型在预测多个类别时,对每个类别的交并比进行加权
其中,单个cls类别目录下的每个三级目录为一个样本,例如cls1文件的样本为aa和bb。 所有样本文件夹(如 aa)包含的图片数量相等,例如cls1样本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视
定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。 框重叠比例阈值 用于判定模型预测的边界框与真实边界框之间是否为同一物体。该阈值
图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据清洗。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。
保对max_tokens进行了合理的设置。 presence_penalty 否 Float 用于调整模型对新Token的处理方式。即如果一个Token已经在之前的文本中出现过,那么模型在生成这个Token时会受到一定的惩罚。当presence_penalty的值为正数时,模型会
设置为任意值,使用标准UUID格式。 图2 获取工作流调用路径-2 使用Postman调用API 获取Token。参考《API参考》文档“如何调用REST API > 认证鉴权”章节获取Token。 在Postman中新建POST请求,并填入工作流的调用路径,详见获取调用路径。 填写请求Header参数。
在特定任务上具有更高的准确性:微调后的模型在具体任务中表现更优。相较于预训练阶段的通用能力,微调能使模型更好地解决细分任务的需求。 在一个客户服务问答系统中,可以用特定领域(如电商、保险)的对话数据对预训练模型进行微调,使其更好地理解和回答与该领域相关的问题。 此外,针对微调训练任务,平台提供了两种微调方式:
盘古大模型提供了REST(Representational State Transfer)风格的API,支持您通过HTTPS请求调用,调用方法请参见如何调用REST API。 调用API时,需要用户网络可以访问公网。 父主题: 使用前必读
在左侧导航栏中选择“能力调测”,单击“文本对话”页签。 选择需要调用的服务。可从“预置服务”或“我的服务”中选择。 填写系统人设。如“你是一个AI助手”,若不填写,将使用系统默认人设。 在页面右侧配置参数,具体参数说明见表1。 表1 NLP大模型能力调测参数说明 参数 说明 搜索增强
“训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。 Prompt设置:请检查您使用的Prompt,对于同一个目标任务,建议在推理阶段使用和训练数据相同或相似的PROMPT,才能发挥出模型的最佳效果。 模型规格:理论上模型的参数规模越大,模型能学到
杂推理或数学任务,在问题的结尾可以加上“分步骤解决问题”或者“让我们一步一步地思考”,以引导大模型进行逐步的推理和解答。 通过上述指令,将一个推理任务拆解分步骤进行,可以降低推理任务的难度并可以增强答案可解释性。另外,相比直接输出答案,分步解决也容许大模型有更多的“思考时间”,用更多的计算资源解决该问题。
nt开发平台。 进入“工作台 > 插件”页面。 导出插件。 单击页面右上角“导出”。 在“导出插件”页面选择工作流,单击“导出”。插件将以一个jsonl格式的文件下载至本地。 导入插件。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
ent开发平台。 进入“工作台 > 应用”页面。 导出应用。 单击页面右上角“导出”。 在“导出应用”页面选择应用,单击“导出”。应用将以一个jsonl格式的文件下载至本地。 导入应用。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
体验,详见创建与管理插件、编排工作流、创建与管理知识库。 应用编排流程见表1。 表1 应用编排流程 操作步骤 说明 步骤1:创建应用 创建一个新应用。 步骤2:配置Prompt 在应用中配置大模型所需的Prompt。 步骤3:添加插件 为应用添加插件技能。 步骤4:添加工作流 为应用添加工作流技能。
训练、微调操作的适用场景如下: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以及区域范围,适用于想自定义自己的区域模型的场景,需预先准备好区域高精度数据。 微调:在已有模型的基础上添加新数据,它适用于不改变模型结构参数和引入新要素的情况,添加最新数据的场景。
点进行分类。 Pangu-Predict-Table-Reg-2.0.0 2024年12月发布的版本,支持根据已知的输入变量(特征)来预测一个连续型输出变量(目标变量)。 Pangu-Predict-Table-Anom-2.0.0 2024年12月发布的版本,支持识别数据集中不符合预期模式或行为的数据点。
平台。 进入“工作台 > 工作流”页面。 导出工作流。 单击页面右上角“导出”。 在“导出工作流”页面选择工作流,单击“导出”。工作流将以一个jsonl格式的文件下载至本地。 导入工作流。 单击页面右上角“导入”。 在“导入”页面,单击“选择文件”选择需要导入的jsonl文件。 选择导入文件后,选择解析内容。
在视频中标注场景主题类别。每个视频片段只对应一个分类标签,分类项不再进一步细分或包含更多的层次结构。 图1 单层级分类示例-视频主题分类 多层级分类:多层级分类允许对同一视频内容进行更复杂的分类,并通过层次结构展现。通常会先从一个大类别开始,然后逐渐向下细分,直到达到所需的标注
提示词工程类 如何利用提示词提高大模型在难度较高推理任务中的准确率 如何让大模型按指定风格或格式回复 如何分析大模型输出错误回答的根因 为什么其他大模型适用的提示词在盘古大模型上效果不佳 如何判断任务场景应通过调整提示词还是场景微调解决