检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
初始格式 用户操作行为表:单击选择OBS中存储的用户操作行为表。当选择数据格式为csv时,根据情况单击设置数据参数。 通用格式 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和
息文件。当上传的数据中的特征有变化时,用户需要同步更新该文件。该文件为JSON格式,包含特征名、特征大类、特征值类型。 表1 全局特征信息文件字段描述 字段名 类型 描述 是否必选 user_features Array[Object] 用户特征,值为数组,其元素为json对象,参见表2。
获取账号ID 在调用接口的时候,部分URL中需要填入账号ID,所以需要先在管理控制台上获取到账号ID。账号ID获取步骤如下: 登录管理控制台。 单击用户名,在下拉列表中单击“我的凭证”。 在“API凭证”页面中查看账号ID。 图1 获取账号ID 父主题: 附录
String 工作空间id 表2 Query参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户token,获取方式请参见获取用户Token 请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 是 String
权限管理 创建用户并授权使用RES RES自定义策略
准备工作 注册华为帐号并开通华为云 为账号充值 进行服务授权 购买套餐包
RES流程图如图1所示。 图1 RES操作流程 表1 使用流程说明 流程 子任务 说明 详细指导 数据源 准备离线数据源 需要您准备包含用户数据,物品数据,行为数据上传至对象存储服务(OBS)用于推荐系统的离线计算。 准备离线数据源 上传离线数据源至OBS 创建离线数据源 在使
Content-Type 是 String 内容类型,取值为application/json。 X-Auth-Token 是 String 用户token,获取方式请参见获取用户Token。 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 is_success Boolean
数据源管理 数据源管理简介 准备离线数据源 上传离线数据源至OBS 上传实时数据 创建离线数据源 导入近线数据源 数据质量管理 修改或删除数据源
功能 说明 详细指导 猜你喜欢 推荐系统结合用户实时行为,推送更具针对性的内容,实现“千人千面”。 创建智能场景 关联推荐 基于大规模机器学习算法,深度挖掘物品之间的联系,自动匹配精准内容。 热门推荐 基于多维度数据分析,自动匹配所覆盖用户群体更关心的内容进行重点展示。 获取推荐结果
RES自定义策略样例 示例1:拒绝用户删除作业 拒绝策略需要同时配合其他策略使用,否则没有实际作用。用户被授予的策略中,一个授权项的作用如果同时存在Allow和Deny,则遵循Deny优先原则。 如果您给用户授予RES FullAccess的系统策略,但不希望用户拥有RES FullAcc
数据质量管理 数据结构 数据导入 数据探索 父主题: 数据源管理
当前RES支持创建数据源和导入近线数据。创建数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表
宽表:推荐系统内部格式,以行为数据为主,将行为数据中涉及到的用户数据和物品数据整合成一条数据。 画像:画像分为用户画像和物品画像,分别用于存储用户输入的用户特征和物品特征。如果同一用户或物品有多条记录,将会按照用户ID或者物品ID去重。 前提条件 已按照创建离线数据源操作指导完成数据源的创建。
完成数据格式的转化。 执行完成在页面下方会显示数据探索报告,包括“用户报表”、“物品报表”、“行为报表”和“画像查询”。 单击目标报表名称查看具体报表信息。 图1 查看报表 用户报表:根据不同数据格式展示用户数据的类型、最大值和最小值。您可以单击相关数据后的查看数据的详细信息。
以获得更好的推荐结果。 以上功能,我们也可以使用数据治理中心 DataArts Studio,通过拖拽的方式完成配置。具体操作步骤如下: 登录数据治理中心 DataArts Studio管理控制台,在控制台的左侧导航栏,选择“数据开发 > 作业开发”。 在“工作区”页面的右侧,单击“新建作业”。
最大次数:某用户对某物品产生某行为的最大次数。 系统默认行为类型包括: view:物品曝光 click:用户点击物品 collect:用户收藏了某个物品 uncollect:用户取消收藏某个物品 search_click:用户点击搜索结果中的物品 comment:用户对物品的评论
参数设置 参数别名:用户指定参数别名应用于指标公式。 行为类型:选择需要进行评估的行为类型,如物品曝光。 阈值:阈值是用来衡量用户行为有效性的标准, 当数据源的actionMeasure的值大于阈值时, 当前用户行为有效。 去重:您可以单击勾选,根据用户对行为记录去重。 指标设置
排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算
选择离线计算、实时计算、排序模型训练规格和在线并发数。 个性化配置 匹配特征对 匹配用户和物品特征,以便于筛选出该用户相关联的物品进行推荐。 用户特征名:从下拉框中选择目标用户特征用于和物品特征进行匹配。 物品特征名:从下拉框中选择目标物品特征用于匹配用户特征,更好的做出推荐。 权重:取值为0.01-1。权重