检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
查看创建失败的图 当GES依赖的ECS服务的配额不足时,会出现创建图失败的情况,您可以在“图管理”页面查看创建失败的图。 操作步骤 在左侧导航栏,选择“图管理”。 在“图管理”页面中,左上角的“图管理”页签旁可以看到当前创建图失败的图数量。 图1 创图失败的图数量 单击可查看创建
新增重启图功能 当图例处于运行中(但是访问图有未知异常)、导入中、导出中、清除中状态时,想停止该图的运行状态,可执行重启图操作来重置。 商用 重启图 2021年5月 序号 功能名称 功能描述 阶段 相关文档 1 细粒度权限控制界面可视化 GES图实例提供了细粒度权限控制,可对特定La
GES资源 资源是服务中存在的对象。在GES中,资源如下,您可以在创建自定义策略时,通过指定资源的路径来选择特定资源。 表1 GES的指定资源与对应路径 指定资源 资源名称 资源的路径 graphName GES图名称 graphName backupName GES备份名称 backupName
子图匹配(Subgraph Matching) 概述 子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。 适用场景 子图匹配(subgraph matching)算法适用于
导出备份(2.3.16) 功能介绍 通过该API,您可以将GES图实例备份导出到OBS。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{proj
表3 obsParameters参数说明 参数 是否必选 类型 说明 accessKey 是 String 用户的accessKey。 secretKey 是 String 用户的secretKey。 表4 vertex、edge参数说明 参数 是否必选 类型 说明 label 是 String
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数
k跳算法(k-hop) 概述 k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。 适用场景 k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。
最短路径算法(Shortest Path) 概述 最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。 适用场景 最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。 参数说明 表1 最短路径算法(Shortest
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
时序路径分析(Temporal Paths) 概述 时序路径分析算法(Temporal Paths)区别于静态图上的路径分析,结合了动态图上信息传播的有序性,路径上后一条边的经过时间要晚于或等于前一条边,呈现时间递增(或非减)性。 时序路径不满足传递性:即从节点i到节点j有一条时
"typeNameCount": "2", "dataType": "enum" } } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":
"single", "dataType": "string" } } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":
标签传播算法(Label Propagation) 概述 标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点
关联路径算法(n-Paths) 概述 关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。 适用场景 关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。 参数说明 表1 关联路径算法(n-Paths)参数说明 参数 是否必选 说明 类型
获取备份下载链接(2.4.3) 功能介绍 通过该API,您可以获取备份文件下载链接,在有效期(3600秒)之内,您可以通过URL直接下载备份文件。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。
"single", "dataType": "enum" } } ] } SERVER_URL:图的访问地址,取值请参考业务面API使用限制。 响应示例 状态码: 200 成功响应示例 Http Status Code: 200 { "result":
紧密中心度算法(Closeness Centrality) 概述 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness
三角计数算法(Triangle Count) 概述 三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。 适用场景 三角计数算法(Triangle Count)适用于衡量图的结构特性场景。 参数说明 参数 是否必选