检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
取消对应参数的使用情况图。 操作三:鼠标悬浮在图片上的时间节点,可查看对应时间节点的占用率情况。 表2 参数说明 参数 说明 cpuUsage cpu使用率。 gpuMemUsage gpu内存使用率。 gpuUtil gpu使用情况。 memUsage 内存使用率。 npuMemUsage
获取数据集。动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 方法一:使用公开数据集 ShareGPT下载地址: https://huggingface
app列表。 workspace_id 否 String 工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 表4 Apps 参数 是否必选 参数类型 描述 app_id 否 String APP的编号,可通过查询APP列表获取。
代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.911
代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软
于llama3系列 2、PPO训练暂不支持ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type: lora
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前指令微调数据集支持alpaca格式和sharegpt格式的数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
6、python2.7、tf2.1-python3.7,表示该模型可同时在CPU或GPU运行。其他Runtime的值,如果后缀带cpu或gpu,表示该模型仅支持在CPU或GPU中运行。 默认使用的Runtime为python2.7。 Spark_MLlib python2.7(待下线)
在ModelArts开发环境中运行Notebook实例时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 Notebook实例停止运行时,EVS还会持续计费,需及时删除才能停止EVS计费。 计算资源费用: 如果运行Notebook实例时,使用专属资源池进行模型训练和推理,计算资源不计费。
录,用户可以使用此目录来储存临时文件。“/cache”与代码目录共用资源,不同资源规格有不同的容量。 k8s磁盘的驱逐策略是90%,所以可以正常使用的磁盘大小应该是“cache目录容量 x 0.9”。 裸机的本地磁盘为物理磁盘,无法扩容,如果存储的数据量大,建议使用SFS存放数据,SFS支持扩容。
目录是/work 解决方案 这是创建训练作业选用的算法有差异导致的。 如果选择的算法是使用旧版镜像创建的,那么创建训练作业时输入输出参数的超参目录就是/work。 图3 创建算法 如果选择的算法不是使用旧版镜像创建的,那么创建训练作业时输入输出参数的超参目录就是/ma-user。 父主题:
以PyTorch框架创建训练作业(新版训练) 本节通过调用一系列API,以训练模型为例介绍ModelArts API的使用流程。 概述 使用PyTorch框架创建训练作业的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新代码目录下data/dataset_info
准备数据(可选) 此小节为自定义数据集执行过程,如非自定义数据集此小节忽略。 本教程使用到的是LLamaFactory代码包自带数据集。您也可以自行准备数据集,目前支持alpaca格式和sharegpt格式的微调数据集;使用自定义数据集时,请更新dataset_info.json文件;请务必在dataset_info
PyTorch大模型训练的精度问题的分析、定位可以参考如下思路: 大模型训练通常使用多机训练,鉴于多机训练复现问题的成本较高,且影响因子较多,建议用户先减少模型层数,使模型能够单机训练,确认单机训练是否也存在精度问题,若存在,则使用下述手段定位精度问题,使得单机精度达标,然后再恢复层数拉起多机训练。
unknown = parser.parse_known_args() 完成参数解析后,用户使用“data_url”、“train_url”代替算法中数据来源和数据输出所需的路径。 在使用预置框架创建算法时,根据1中的代码参数设置定义的输入输出参数。 训练数据是算法开发中必不可少
在“团队详情”区域,单击“添加成员”。 在弹出的“添加成员”对话框中,按照分类,可选择“当前账号”或“其他账号”。选择“当前账号”,需要填写成员的 “IAM用户名”、“角色”、“描述”。选择“其他账号”,需要填写成员的“账号ID”、“IAM用户ID”、“角色”、“描述”,单击左下角“添加账
代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E,在此路径中查找下载ModelArts 6.3.912