检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 若镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
以出行场景的司乘安全算法为例,介绍使用ModelArts进行流程化服务部署和更新、自动化服务运维和监控的实现步骤。 图3 司乘安全算法 将用户本地开发完成的模型,使用自定义镜像在ModelArts构建成AI应用。具体操作请参考从0-1制作自定义镜像并创建AI应用。 在ModelArts管理控制台,使用创建好的AI应用部署为在线服务。
安装nvidia-fabricmanager Ant系列GPU支持NvLink & NvSwitch,若您使用多GPU卡的机型,需额外安装与驱动版本对应的nvidia-fabricmanager服务使GPU卡间能够互联,否则可能无法正常使用GPU实例。 nvidia-fabricmanager必须和nvidia driver版本保持一致。
练和推理时,会使用计算资源和存储资源,会产生计算资源和存储资源的累计值计费。具体内容如表1所示。 计算资源费用: 如果运行自动学习作业/Workflow工作流时,使用专属资源池进行模型训练和推理,计算资源不计费。 如果运行自动学习作业/Workflow工作流时,使用公共资源池进行模型训练和推理,计算资源需收费。
场景介绍 当专属资源池创建完成,使用一段时间后,由于用户AI开发业务的变化,对于资源池资源量的需求可能会产生变化,面对这种场景,ModelArts专属资源池提供了扩缩容功能,用户可以根据自己的需求动态调整。 使用扩容功能时,可以增加资源池已有规格的节点数量。 使用缩容功能时,可以减少资源池已有规格的节点数量。
在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc - V”显示正确的安装信息,然后使用Pytorch下述命令验证cuda有效性: print(torch.cuda.is_available())
pip install SomePackage #最新版本安装 pip uninstall SomePackage #卸载软件版本 其他命令请使用pip --help命令查询。 父主题: 更多功能咨询
作为调用发起方的客户端无法访问已经获取到的推理请求地址 问题现象 完成在线服务部署且服务处于“运行中”状态后,已经通过调用指南页面的信息获取到调用的server端地址,但是调用发起方的客户端访问该地址不通,出现无法连接、域名无法解析的现象。 原因分析 在调用指南页签中显示的调用地
ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelAr
ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelAr
ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelAr
Lite Server资源配置流程 在开通Lite Server资源后,需要完成相关配置才能使用,配置流程如下图所示。 图1 Lite Server资源配置流程图 表1 Server资源配置流程 配置顺序 配置任务 场景说明 1 配置Lite Server网络 Server资源开
ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelAr
如果需要在个人PC或虚拟机上使用ModelArts SDK,则需要在本地环境中安装ModelArts SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts
Arts底层支持各种异构计算资源,开发者可以根据需要灵活选择使用,而不需要关心底层的技术。同时,ModelArts支持Tensorflow、MXNet等主流开源的AI开发框架,也支持开发者使用自研的算法框架,匹配您的使用习惯。 ModelArts的理念就是让AI开发变得更简单、更
针对第一次使用ModelArts的用户,本文提供端到端案例指导,帮助您快速了解如何在ModelArts上选择合适的训练方案并进行模型训练。 针对不同的数据量和算法情况,推荐以下训练方案: 单机单卡:小数据量(1G训练数据)、低算力场景(1卡Vnt1),存储方案使用“OBS的并行文件系统(存放数据和代码)”。