检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处理、sample等,实现了高效的推理性能。 Ascend-vLLM架构 Ascend-vLLM架构图如下所示。 算子:使用CANN基础算
代码说明 下载地址 AscendCloud-3rdLLM-6.3.904-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试
、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试
代码说明 下载地址 AscendCloud-3rdLLM-6.3.904-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PATH重新覆盖权重文件保存路径,作为最终的权重保存路径。修改代码如图2。 图2 修改权重保存路径 多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs
代码说明 下载地址 AscendCloud-3rdLLM-6.3.904-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见代码目录介绍。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
和各项云服务技术的安全功能和性能本身,也包括运维运营安全,以及更广义的安全合规遵从。 租户:负责云服务内部的安全,安全地使用云。 华为云租户的安全责任在于对使用的IaaS、PaaS和SaaS类各项云服务内部的安全以及对租户定制配置进行安全有效的管理,包括但不限于虚拟网络、虚拟主机
ning”关键字时,表示开始训练。训练过程中,训练日志会在最后的Rank节点打印。 图1 等待模型载入 更多查看训练日志和性能操作,请参考查看日志和性能章节。 如果需要使用断点续训练能力,请参考断点续训练章节修改训练脚本。 父主题: 预训练
中断,也可以基于checkpoint接续训练,保障需要长时间训练的模型的稳定性和可靠性,避免重新开始训练耗费的时间与计算成本 支持训练数据使用SFS Turbo文件系统进行数据挂载,训练作业产生的中间和结果等数据可以直接高速写入到SFS Turbo缓存中,并可被下游业务环节继续读
、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试
process the new request 原因分析 该报错是因为发送预测请求后,服务出现停止后又启动的情况。 处理方法 需要您检查服务使用的镜像,确定服务停止的原因,修复问题。重新创建模型部署服务。 父主题: 服务部署
-> 'c:\python39\Scripts\ephemeral-port-reserve.exe.deleteme ”。 原因分析 用户使用权限问题导致。 处理方法 用户电脑切换到管理员角色,键盘快捷键(Windows+R模式)并输入cmd,进入黑色窗口,执行如下命令: python
图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PATH重新覆盖权重文件保存路径,作为最终的权重保存路径。修改代码如图2。 图2 修改权重保存路径 多机训练场景下,需要将CODE_DIR修改为OBS_CODE_DIR目录,则可以使用scripts/tools/sync_with_obs
_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考模型NPU卡数、梯度累积值取值表,如原使用Accelerator可替换为Deepspeed-ZeRO-1,Deepspeed-ZeRO-1替换为Deepspeed-ZeRO-2以此类推,重新训练如未解决则执行下一步。
Turbo委托权限导致关联或解除关联失败。 处理方法 需要您给ModelArts配置SFS Turbo委托权限,配置步骤请参考最佳实践的“委托授权ModelArts云服务使用SFS Turbo”章节。 父主题: 资源池
作业日志选择OBS中的路径,ModelArts的训练作业的日志信息则保存该路径下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 Step2 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。
‘model_service.tfserving_model_service’,则需要您在推理代码customize_service.py里使用from model_service.pytorch_model_service import PTServingBaseService。示例代码: