检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
工作空间ID。获取方法请参见查询工作空间列表。未创建工作空间时默认值为“0”,存在创建并使用的工作空间,以实际取值为准。 响应参数 状态码:200 表4 响应Body参数 参数 参数类型 描述 app ApigAppDetailInfo object 创建的APP基础信息。 表5 ApigAppDetailInfo
在LLM推理应用中,经常会面临具有长system prompt的场景以及多轮对话的场景。长system prompt的场景,system prompt在不同的请求中但是相同的,KV Cache的计算也是相同的;多轮对话场景中,每一轮对话需要依赖所有历史轮次对话的上下文,历史轮次中的KV Cache在后续每一轮中
用于指定预处理数据的工作线程数。随着线程数的增加,预处理的速度也会提高,但也会增加内存的使用。 per_device_train_batch_size 1 指定每个设备的训练批次大小。 gradient_accumulation_steps 8 必须修改,指定梯度累积的步数,这可以增加批次大小而不增加内存消耗。可参考表1
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokeniz
max_model_len 解决方法: 修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokeniz
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
ModelArts支持从MRS服务中导入存储在HDFS上的csv格式的数据,首先需要选择已有的MRS集群,并从HDFS文件列表选择文件名称或所在目录,导入文件的列数需与数据集schema一致。MRS的详细功能说明,请参考MRS用户指南。 图1 从MRS导入数据 集群名称:系统自动将当前账号下的MRS集群展现在此列表
重置AppCode 功能介绍 重置指定API网关应用的指定的AppCode,只有APP的创建用户才可以重置AppCode,且只有共享/专享版APIG的APP才支持AppCode。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自
nsorBoard是TensorFlow的可视化工具包,提供机器学习实验所需的可视化功能和工具。 TensorBoard是一个可视化工具,能够有效地展示TensorFlow在运行过程中的计算图、各种指标随着时间的变化趋势以及训练中使用到的数据信息。TensorBoard相关概念请参考TensorBoard官网。
hold:持有 skipped:跳过 inputs 否 Array of JobInput objects 节点的输入项。 outputs 否 Array of JobOutput objects 节点的输出项。 step_uuid 否 String 节点的UUID,唯一性标识。
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
号可访问当授权类型为INTERNAL时需要指定可访问的子账号的账号名,可选择多个。 每个账号每个IAM项目都会分配1个默认工作空间,默认工作空间的访问控制为PUBLIC。 通过工作空间的访问控制能力,可限制仅允许部分人访问对应的工作空间。通过此功能可实现类似如下场景: 教育场景:
本化管理,并构建为可运行的模型。 部署服务:模型构建完成后,根据您的业务场景,选择将模型部署成对应的服务类型。 将模型部署为实时推理作业 将模型部署为一个Web Service,并且提供在线的测试UI与监控功能,部署成功的在线服务,将为用户提供一个可调用的API。 将模型部署为批量推理服务
运行完成后,会在output_dir下生成量化后的权重。量化后的权重包括原始权重和kvcache的scale系数。 Step2 抽取kv-cache量化系数 该步骤的目的是将Step1使用tensorRT量化工具进行模型量化中生成的scale系数提取到单独文件中,供推理时使用。 使用的抽取脚本由vllm社区提供:
code String 计费码。 period String 计费时期。 queries_limit Long 查询次数。 price Float 价格。 请求示例 给指定的工作流购买资源包 POST https://{endpoint}/v2/{project_id}/workfl
Workflow工作流配置参数的名称。填写1-64位,仅包含英文、数字、下划线(_)和中划线(-),并且以英文开头的名称。 type 否 String 参数的类型,枚举值如下: str:字符串 int:整型 bool:布尔类型 float:浮点型 description 否 String
使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 约束限制 只支持GPTQ W8A16 perchannel量化,只支持desc_act=false。 GPTQ W8A16量化支持的模型请参见支持的模型列表。 步骤一:量化模型权重 在GPU的机器上使用开源GPTQ量化工具GPTQ